Weather and Climate

Anomaly temporal-spatial distribution of solar radiation in Northwest China

  • Yubi YAO ,
  • Shaozhong ZHENG ,
  • Hongchang DONG ,
  • Jie SHI ,
  • Min ZHANG ,
  • Quan XIA
Expand
  • 1. Lanzhou Resources & Environment Voc-Tech University, Yellow River Basin Ecotope Integration of Industry and Education Research Institute, Key Laboratory of Climate Resources Utilization and Disaster Prevention and Mitigation of Gansu Province, Lanzhou 730021, Gansu, China
    2. Lanzhou Institute of Arid Meteorology under China Meteorological Administration, Lanzhou 730020, Gansu, China
    3. Meteorological Bureau of Dingxi of Gansu Province, Dingxi 743000, Gansu, China

Received date: 2022-08-19

  Revised date: 2023-02-21

  Online published: 2023-06-21

Abstract

The temporal variation, spatial distribution, and temporal and spatial evolution characteristics of the total radiation in Northwest China were studied using meteorological observation data from 169 national meteorological stations in Northwest China, over the past 60 years. The Qaidam Basin in the Northwest of Qinghai and the west of Gansu were the most abundant areas for solar energy resources, the smaller areas in the south of Shaanxi and the southeast of Gansu were found to be resource rich areas, and the other large areas are resource rich areas. From 1961 to 2020, the total radiation showed an upward trend in Southwest Xinjiang, the border area between Gansu and Xinjiang, and smaller areas in northern Gansu and northern Shaanxi, while the total radiation showed a downward trend in most regions of Northwest China. The eigenvector field of EOF mode 1 shows that the total radiation oscillation intensifies from west to east, and the high load area for each component is mainly concentrated in the middle and east, which is the region where the total radiation is prone to be abnormal and the oscillation is strong and sensitive. The eigenvector field of the second EOF mode presents a dipole type from west to east. Qinghai and most of the Gansu are positive regions, which are also the regions with the strongest total radiation and abnormal oscillation. According to the different modal spatial differentiation structure types for the REOF eigenvectors, the study area can be divided into three sub regions, namely: “Eastern northwest anomaly type” which is affected by the East Asian monsoon; “Central northwest anomaly type” which is the marginal region and mainly affected by the East Asian monsoon; and “Western Northwest anomaly type” which is mainly affected by the westerlies. The mutation points for total radiation reduction in the three subregions occurred in 1973, 2017, and 2008 respectively.

Cite this article

Yubi YAO , Shaozhong ZHENG , Hongchang DONG , Jie SHI , Min ZHANG , Quan XIA . Anomaly temporal-spatial distribution of solar radiation in Northwest China[J]. Arid Zone Research, 2023 , 40(6) : 863 -873 . DOI: 10.13866/j.azr.2023.06.02

References

[1] Timilsina G R, Kurdgelashvili L, Narbel P A. A review of solar energy: Markets, economics and policies[J]. Policy Research Working Paper Series, 2011, 16(1): 123-129.
[2] Wilberforce T, Baroutaji A, El H Z, et al. Prospects and challenges of concentrated solar photovoltaics and enhanced geothermal energy technologies[J]. Science of the Total Environment, 2019, 659: 851-861.
[3] IPCC. Climate Change 2021:The Physical Science Basis. Contribution of Working Group Ⅰ to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge and New York: Cambridge University Press, 2021.
[4] Watson R T, Albritton D L, Barker T, et al. Climate Change 2001: Synthes is Report:A Contribution of Working GroupsⅠ,Ⅱand Ⅲ to the Third Assessment Report of the Intergovernmental Panel on Climate Change[M]. Canbridge: Cambridge University Press, 2002: 398.
[5] 周天军, 陈晓龙. 气候敏感度、气候反馈过程与2 ℃升温阈值的不确定性问题[J]. 气象学报, 2015, 73(4): 624-634.
[5] [Zhou Tianjun, Chen Xiaolong. The uncertainty in the 2 ℃ warming threshold issue as related to climate sensitivity and climate feedback[J]. Acta Meteorologica Sinica, 2015, 73(4): 624-634.]
[6] Ren J, Lei X H, Zhang Y H, et al. Sunshine duration variability in Haihe River Basin,China during 1966-2015[J]. Water, 2017, 9(10): 770.
[7] Song Z Y, Chen L T, Wang Y J, et al. Effects of urbanization on the decrease in sunshine duration over eastern China[J]. Urban climate, 2019, 28: 100471.
[8] Tang W J, Yang K, Qin J, et al. First effort for constructing a direct solar radiation data set in China for solar energy applications[J]. Journal of Geophysical Research-Atmospheres, 2018, 123(3): 1724-1734.
[9] 陶苏林, 戚易明, 申双和, 等. 中国1981-2014 年太阳总辐射的时空变化[J]. 干旱区资源与环境, 2016, 30(11): 143-147.
[9] [Tao Suling, Qi Yiming, Shen Shuanghe, et al. The spatial and temporal variation of solar radiation over China from 1981 to 2014[J]. Journal of Arid Land Resources and Environment, 2016, 30(11): 143-147.]
[10] 李小军, 辛晓洲, 彭志晴. 2003—2012年中国地表太阳辐射时空变化及其影响因子[J]. 太阳能学报, 2017, 38(11): 3057-3066.
[10] [Li Xiaojun, Xin Xiaozhou, Peng Zhiqing. Change analysis of surface solar radiation in China from 2003 to 2012[J]. Acta Energiae Solaris Sinica, 2017, 38(11): 3057-3066.]
[11] 杜军, 高佳佳, 次旺顿珠. 1971—2019年羌塘国家级自然保护区日照时数变化特征及其影响因素[J]. 太阳能学报, 2022, 43(2): 287-295.
[11] [Du Jun, Gao Jiajia, Ciwangdunzhu, Spatio-temporal change of sunshine duration and its influence factors in Chang tang nature reserve of Tibet from 1971 to 2019[J]. Acta Energiae Solaris Sinica, 2022, 43(2): 287-295.]
[12] 刘淳, 任立清, 李学军, 等. 1990—2019年中国北方沙区太阳能资源评估[J]. 高原气象, 2021, 40(5): 1213-1223.
[12] [Liu Chun, Ren Liqing, Li Xuejun, et al. Evaluation to the solar energy resources in the sandy regions of Northern China from 1990 to 2019[J]. Plateau Meteorology, 2021, 40(5): 1213-1223.]
[13] 梁玉莲, 申彦波, 白龙, 等. 华南地区太阳能资源评估与开发潜力[J]. 应用气象学报, 2017, 28(4): 481-492.
[13] [Lang Yulian, Shen Yanbo, Bai Long, et al. Assessment of solar energy resources and its exploitation potential in South China[J]. Journal of Applied Meteorological Science, 2017, 28(4): 481-492.]
[14] 周扬, 吴文祥, 胡莹, 等. 西北地区太阳能资源空间分布特征及资源潜力评估[J]. 自然资源学报, 2010, 25(10): 112-123.
[14] [Zhou Yang, Wu Wenxiang, Hu Ying, et al. The temporal-spatial distribution and evaluation of potential solar energy resources in Northwest China[J]. Journal of Natural Resources, 2010, 25(10): 112-123.]
[15] 申彦波, 程兴宏, 赵东. 气象与太阳能生态城[M]. 北京: 气象出版社, 2013.
[15] [Shen Yanbo, Cheng Xinghong, Zhao Dong. Weather and Solar Eco-City[M]. Beijing: Meteorological Press, 2013.]
[16] 刘佳, 何清, 刘蕊, 等. 新疆太阳辐射特征及其太阳能资源状况[J]. 干旱气象, 2008, 26(4): 61-66.
[16] [Liu Jia, He Qing, Liu Rui, et al. The characteristics of solar radiation and solar resources in Xinjiang[J]. Journal of Arid Meteorology, 2008, 26(4): 61-66.]
[17] 韩世涛, 刘玉兰, 刘娟, 等. 宁夏太阳能资源评估分析[J]. 干旱区资源与环境, 2010, 24(8): 131-135.
[17] [Han Shitao, Liu Yulan, Liu Juan, et al. Evaluation analysis on solar energy resources in Ningxia[J]. Journal of Arid Land Resources and Environment, 2010, 24(8): 131-135.]
[18] 朱飙, 李春华, 方锋. 甘肃省太阳能资源评估[J]. 干旱气象, 2010, 28(2): 217-221.
[18] [Zhu Biao, Li Chunhua, Fang Feng. Solar energy resource assessment in Gansu Province[J]. Arid Meteorology, 2010, 28(2): 217-221.]
[19] 胡亚男, 李兴华, 郝玉珠. 内蒙古太阳能资源时空分布特征与评估研究[J]. 干旱区资源与环境, 2019, 33(12): 132-138.
[19] [Hu Yanan, Li Xinghua, Hao Yuzhu. Spatiotemporal distribution characteristics and evaluation of solar energy resources in Inner Mongolia[J]. Journal of Arid Land Resources and Environment, 2019, 33(12): 132-138.]
[20] 陈少勇, 邢晓宾, 张康林, 等. 中国西北地区太阳总辐射的气候特征[J]. 资源科学, 2010, 32(8): 1444-1451.
[20] [Chen Shaoyong, Xing Xiaobin, Zhang Kanglin, et al. Climatic characteristics of gross solar radiation over Northwestern China[J]. Resources Science, 2010, 32(8): 1444-1451.]
[21] 姚玉璧, 郑绍忠, 杨扬, 等. 中国太阳能资源评估及其利用效率研究进展与展望[J]. 太阳能学报, 2022, 43(10): 524-535.
[21] [Yao Yubi, Zheng Shaozhong, Yang Yang, et al. Progress and prospects on solar energy resource evaluation and utilization efficiency in China[J]. Acta Energiae Solaris Sinica, 2022, 43(10): 524-535.]
[22] 杨羡敏, 曾燕, 邱新法, 等. 1960—2000年黄河流域太阳总辐射气候变化规律研究[J]. 应用气象学报, 2005, 16(2): 243-248.
[22] [Yang Xianmin, Zeng Yan, Qiu Xinfa, et al. The climatic change of global solar radiation over the Yellow river basin during1960-2000[J]. Journal of Applied Meteorological Science, 2005, 16(2): 243-248.]
[23] 吴霞, 姜志伟, 蒙荣, 等. 河套平原太阳辐射变化特征及其与气象要素的相互影响[J]. 干旱区研究, 2022, 39(1): 41-53.
[23] [Wu Xia, Jiang Zhiwei, Meng Rong, et al. Variation characteristics of solar radiation and the interaction with meteorological elements in the Hetao Plain[J]. Arid Zone Research, 2022, 39(1): 41-53.]
[24] 齐月, 房世波, 周文佐. 近50年来中国地面太阳辐射变化及其空间分布[J]. 生态学报, 2014, 34(24): 7444-7453.
[24] [Qi Yue, Fang Shibo, Zhou Wenzuo. The changes and spatial distribution of ground solar radiation in China in the past 50 years[J]. Acta Ecologica Sinica, 2014, 34(24): 7444-7453.]
[25] 王澄海, 张晟宁, 张飞民, 等. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[25] [Wang Chenghai, Zhang Shengning, Zhang Feimin, et al. On the increase of precipitation in the Northwestern China under the global warming[J]. Advances in Earth Science, 2021, 36(9): 980-989.]
[26] 申彦波, 王香云, 章毅之, 等. 太阳能资源评估方法 GB/T 37526-2019[S]. 北京: 中国国家标准化管理委员会, 2019.
[26] [Shen Yanbo, Wang Xiangyun, Zhang Yizhi, et al. Assessment Method for Solar Energy Resource GB/T 37526-2019[S]. Beijing: Standardization Administration of China, 2019.]
[27] 魏凤英. 现代气候统计诊断与预测技术[M]. 北京: 气象出版社, 2007: 36-69.
[27] Wei Fengying. Climatological Statistical Diagnosis and Prediction Technology[M]. Beijing: Meteorological Press, 2007: 36-69.]
[28] 吴洪宝, 吴蕾. 气候变率诊断和预测方法[M]. 北京: 气象出版社, 2005: 33-244.
[28] Wu Hongbao, Wu Lei. Diagnosis and Prediction Methods of Climate Variability[M]. Beijing: Meteorological Press, 2005: 33-244.]
[29] 徐栋夫, 李栋梁, 王慧. 我国西南地区秋季干湿分类及主要类型异常年环流特征分析[J]. 大气科学, 2014, 38(2): 373-385.
[29] [Xu Dongfu, Li Dongliang, Wang Hui. Autumn dry-wet conditions and main types of atmospheric circulationin anomalous years in Southwest China[J]. Chinese Journal of Atmospheric Sciences, 2014, 38(2): 373-385.]
[30] North G R, Bell T L, Cahalan R F, et al. Sampling errors in the estimation of empirical orthogonal function[J]. Monthly Weather Review, 1982: 110: 699-706.
[31] 孙卫国. 气候资源学[M]. 北京: 气象出版社, 2008: 123-150.
[31] [Sun Weiguo. Science of Climatic Resources[M]. Beijing: Meteorological Press, 2008: 123-150.]
[32] 张强, 杨金虎, 王朋岭, 等. 西北地区气候暖湿化的研究进展与展望[J]. 科学通报, 2023, 68(14): 1184-1828.
[32] [Zhang Qiang, Yang Jinhu, Wang Pengling, et al. Progress and prospect on climate warming and humidification in Northwest China[J]. Chinese Science Bulletin, 2023, 68(14): 1184-1828.]
[33] 姚俊强, 李漠岩, 迪丽努尔·托列吾别克, 等. 不同时间尺度下新疆气候“暖湿化”特征[J]. 干旱区研究, 2022, 39(2): 333-346.
[33] [Yao Junqiang, Li Moyan, Dilinuer Tuoliewubieke, et al. The assessment on“warming-wetting”trend in Xinjiang at multi-scale during 1961-2019[J]. Arid Zone Research, 2022, 39(2): 333-346.]
[34] 卢宝宝, 孙慧兰, 姜泉泉, 等. 近53 a新疆水分盈亏量时空变化特征[J]. 干旱区研究, 2021, 38(6): 1579-1589.
[34] [Lu Baobao, Sun Huilan, Jiang Quanquan, et al. Spatiotemporal variation characteristics of the water budget in Xinjiang during the latest 53 years[J]. Arid Zone Research, 2021, 38(6): 1579-1589.]
[35] 闫昕旸, 张强, 张文波, 等. 泛中亚干旱区气候变化特征分析[J]. 干旱区研究, 2021, 38(1): 1-11.
[35] [Yan Xinyang, Zhang Qiang, Zhang Wenbo, et al. Analysis of climate characteristics in the Pan-Central-Asia arid region[J]. Arid Zone Research, 2021, 38(1): 1-11.]
Outlines

/