Plant Ecology

Distribution characteristics of carbon density in the arbor and soil layers of Qinghai spruce forest on the southern slope of Qilian Mountains with altitude

  • Xunxun QIU ,
  • Guangchao CAO ,
  • Jinhu ZHANG ,
  • Zhuo ZHANG ,
  • Menglin LIU
Expand
  • 1. College of Geographical Sciences, Qinghai Normal University, Xining 810008, Qinghai, China
    2. Qinghai Key Laboratory of Natural Geography and Environmental Process, Xining 810008, Qinghai, China
    3. Key Laboratory of Earth Surface Processes and Ecological Conservation of the Ministry of Education, Qinghai-Tibet Plateau, Xining 810008, Qinghai, China
    4. Kizilsu Ecological Environment Monitoring Station in Xinjiang Uygur Autonomous Region, Artush 845350, Xinjiang, China

Received date: 2022-07-30

  Revised date: 2023-01-30

  Online published: 2023-04-28

Abstract

Forest biomass is the basis for studying forest primary productivity, and its carbon density is a crucial indicator for evaluating the structure and function of forest ecosystem. To study changes in the stand density of Qinghai spruce with altitude in Amidongsoe small watershed on the southern slope of Qilian Mountains, a biomass model was used to calculate the carbon density of arbor and soil layers along an altitude gradient of 2900-3200 m at different altitudes. The aim of this study was to gather basic data for estimating carbon storage in spruce forests in the Qilian Mountains and Qinghai Province. The results demonstrated that the average value of total biomass in the study area was 135.59 t·hm-2 and the total biomass decreased as the altitude increased. The average carbon density of tree layer was 70.51 t·hm-2, and the average organic carbon density of the 0-50 cm soil layer was 154.01 t·hm-2. As the altitude increased, the carbon density of the tree layer exhibited a decreasing trend, and the soil organic carbon density of the tree layer initially decreased and then increased. At different elevations, the carbon density of spruce forest ecosystem was 224.51 t·hm-2, with the carbon density of the tree and soil layers accounting for 30.5% and 69.5% of the total carbon density, respectively. The layers showed a decreasing trend as the altitude increased. Protecting forest soil is crucial for maintaining ecological balance, as the forest soil carbon pool represents a considerable proportion of the total carbon density.

Cite this article

Xunxun QIU , Guangchao CAO , Jinhu ZHANG , Zhuo ZHANG , Menglin LIU . Distribution characteristics of carbon density in the arbor and soil layers of Qinghai spruce forest on the southern slope of Qilian Mountains with altitude[J]. Arid Zone Research, 2023 , 40(4) : 615 -622 . DOI: 10.13866/j.azr.2023.04.10

References

[1] Lai R. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 2004, 304: 1623-1627.
[2] Bonan G B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests[J]. Science, 2008, 320(5882): 1444-1449.
[3] 刘贤德, 赵维俊, 张学龙, 等. 祁连山排露沟流域青海云杉林土壤养分和pH变化特征[J]. 干旱区研究, 2013, 30(6): 1013-1020.
[3] [Liu Xiande, Zhao Weijun, Zhang Xuelong, et al. Changes of soil nutrients and pH in Qinghai spruce forest in Pai Lu Gou Basin, Qilian Mountains[J]. Arid Zone Research, 2013, 30(6): 1013-1020.]
[4] 石仁娜·加汗, 张同文, 喻树龙, 等. 天山不同海拔雪岭云杉径向生长对气候变化的响应[J]. 干旱区研究, 2021, 38(2): 327-338.
[4] [Shi Renna Jiahan, Zhang Tongwen, Yu Shulong, et al. Response of radial growth of spruce at different elevations to climate change in Tianshan Mountains[J]. Arid Zone Research, 2021, 38(2): 327-338.]
[5] 马超, 周静, 刘满强, 等. 秸秆促腐还田对土壤养分及活性有机碳的影响[J]. 土壤学报, 2013, 50(5): 915-921.
[5] [Ma Chao, Zhou Jing, Liu Manqiang, et al. Effects of straw on soil nutrients and active organic carbon[J]. Acta Pedologica Sinica, 2013, 50(5): 915-921.]
[6] Sauer T J, Cambardella C A, Brandle J R. Soil carbon and tree litter dynamics in a red cedar-scotch pine shelterbelt[J]. Agroforestry Systems, 2007, 71(3): 163-174.
[7] 秦纪洪, 王琴, 孙辉. 川西亚高山-高山土壤表层有机碳及活性组分沿海拔梯度的变化[J]. 生态学报, 2013, 33(18): 5858-5864.
[7] [Qin Jihong, Wang Qin, Sun Hui. Changes of surface organic carbon and active components along altitudinal gradients in subalpine and alpine soils of western Sichuan[J]. Acta Ecologica Sinica, 2013, 33(18): 5858-5864.]
[8] 熊华, 于飞, 谷晓平, 等. 梵净山不同森林植被生物量、净生产量、碳储量及空间分布特征[J]. 生态环境学报, 2021, 30(2): 264-273.
[8] [Xiong Hua, Yu Fei, Gu Xiaoping, et al. Biomass, net production, carbon storage and spatial distribution of different forest vegetation in Fanjing Mountain[J]. Journal of Ecology and Environment, 2021, 30(2): 264-273.]
[9] 秦艳培, 徐少君, 田耀武. 黄河流域河南段植被和土壤及其碳密度空间分异研究[J]. 生态环境学报, 2022, 31(9): 1745-1753.
[9] [Qin Yanpei, Xu Shaojun, Tian Yaowu. Spatial differentiation of vegetation, soil and carbon density in the Henan section of the Yellow River Basin[J]. Journal of Eco-Environment, 2022, 31(9): 1745-1753.]
[10] 任德智, 廖兴勇, 肖前刚, 等. 成都市森林植被碳储量及空间分布格局[J]. 西部林业科学, 2021, 50(3): 74-81.
[10] [Ren Dezhi, Liao Xingyong, Xiao Qiangang, et al. Carbon storage and spatial distribution pattern of forest vegetation in Chengdu[J]. Journal of Western Forestry Science, 2021, 50(3): 74-81.]
[11] 张彦军, 郁耀闯, 牛俊杰, 等. 秦岭太白山北坡土壤有机碳储量的海拔梯度格局[J]. 生态学报, 2020, 40(2): 629-639.
[11] [Zhang Yanjun, Yu Yaochuang, Niu Junjie, et al. Altitudinal gradient pattern of soil organic carbon storage in the Northern Slope of Taibai Mountain, Qinling Mountains[J]. Acta Ecologica Sinica, 2020, 40(2): 629-639.]
[12] 黄斌, 王泉泉, 李定强, 等. 南岭山地土壤有机碳及组分海拔梯度变化特征[J]. 土壤通报, 2022, 53(2): 374-383.
[12] [Huang Bin, Wang Quanquan, Li Dingqiang, et al. Changes of soil organic carbon and its components in elevation gradient in Nanling Mountain[J]. Chinese Journal of Soil Science, 2022, 53(2): 374-383.]
[13] Zhu B, Wang X P, Fang J Y, et al. Altitudinal changes in carbon storage of temperate forests on Mt Changbai, Northeast China[J]. Journal of Plant Research, 2010, 123(4): 439-452.
[14] 高黎明, 张乐乐. 青海湖流域植被盖度时空变化研究[J]. 地球信息科学学报, 2019, 21(9): 1318-1329.
[14] [Gao Liming, Zhang Lele. Temporal and spatial variations of vegetation coverage in Qinghai Lake Basin[J]. Journal of Geo-Information Science, 2019, 21(9): 1318-1329.]
[15] 石建周, 刘贤德, 田青, 等. 祁连山中部青海云杉年内径向生长季节变化及其对环境因子的响应[J]. 水土保持学报, 2022, 36(2): 261-267.
[15] [Shi Jianzhou, Liu Xiande, Tian Qing, et al. Annual radial seasonal variation of Picea Qinghai and its response to environmental factors in the central Qilian Mountains[J]. Journal of Soil and Water Conservation, 2022, 36(2): 261-267.]
[16] 王清涛, 赵传燕, 王小平, 等. 基于FAREAST模型的青海云杉中-幼龄林生物量碳沿海拔梯度分布特征[J]. 干旱区地理, 2020, 43(5): 1316-1326.
[16] [Wang Qingtao, Zhao Chuanyan, Wang Xiaoping, et al. Biomass carbon distribution along altitude gradient in middle-young Spruce forest based on FAREAST model[J]. Arid Land Geography, 2020, 43(5): 1316-1326.]
[17] 段荣贵. 祁连山南坡青海云杉林的分布规律[J]. 青海大学学报(自然科学版), 2012, 30(3): 74-79.
[17] [Duan Ronggui. Distribution of Qinghai spruce forest on the southern slope of Qilian Mountains[J]. Journal of Qinghai University (Natural Science Edition), 2012, 30(3): 74-79.]
[18] 孟延山, 孟俐君, 王静洁, 等. 青海省2种主要树种的生物量分配格局和单木生物量模型[J]. 西部林业科学, 2019, 48(6): 21-28.
[18] [Meng Yanshan, Meng Lijun, Wang Jingjie, et al. Biomass distribution pattern and biomass model of two main tree species in Qinghai Province[J]. Western Forestry Science, 2019, 48(6): 21-28.]
[19] 张雷, 于澎涛, 王彦辉, 等. 祁连山北坡青海云杉中龄林生物量随海拔的变化[J]. 林业科学, 2015, 51(8): 1-7.
[19] [Zhang Lei, Yu Pengtao, Wang Yanhui, et al. Biomass changes of Qinghai spruce with altitude in mid-life forest on Northern Slope of Qilian Mountains[J]. Scientia Silvae Sinicae, 2015, 51(8): 1-7.]
[20] 曾立雄, 雷蕾, 王晓荣, 等. 海拔梯度对祁连山青海云杉林乔木层和土壤层碳密度的影响[J]. 生态学报, 2018, 38(20): 7168-7177.
[20] [Zeng Lixiong, Lei Lei, Wang Xiaorong, et al. Effects of altitude gradient on carbon density in tree layer and soil layer of Spruce forest in Qinghai, Qilian Mountains[J]. Acta Ecologica Sinica, 2018, 38(20): 7168-7177.]
[21] 尤海舟, 毕君, 王超, 等. 河北小五台山不同海拔白桦林土壤有机碳密度分布特征及影响因素[J]. 生态环境学报, 2018, 27(3): 432-437.
[21] [You Haizhou, Bi Jun, Wang Chao, et al. Distribution characteristics and influencing factors of soil organic carbon density in birch forest at different elevations in Xiaowutai Mountain, Hebei Province[J]. Journal of Ecology and Environment, 2018, 27(3): 432-437.]
[22] 刘兴聪. 祁连山哈溪林场青海云杉林生物量的测定[J]. 甘肃林业科技, 1992(1): 7-10.
[22] [Liu Xingcong. Biomass determination of Qinghai Spruce forest in Haxi forest farm in Qilian Mountains[J]. Gansu Forestry Science and Technology, 1992(1): 7-10.]
[23] 许仲林. 祁连山青海云杉林地上生物量潜在碳储量估算[D]. 兰州: 兰州大学, 2011.
[23] [Xu Zhonglin. Estimation of Aboveground Biomass Potential Carbon Storage in Qinghai Spruce Forest in Qilian Mountains[D]. Lanzhou: Lanzhou University, 2011.]
[24] 方精云, 刘国华, 徐嵩龄. 我国森林植被的生物量和净生产量[J]. 生态学报, 1996, 16(5): 497-508.
[24] [Fang Jingyun, Liu Guohua, Xu Songling. Biomass and net production of forest vegetation in China[J]. Acta Ecologica Sinica, 1996, 16(5): 497-508.]
[25] 张立杰, 蒋志荣. 青海云杉种群分布格局沿海拔梯度分形特征的变化[J]. 西北林学院学报, 2006, 21(2): 64-66.
[25] [Zhang Lijie, Jiang Zhirong. Fractal characteristics of spruce population distribution pattern along altitude gradient in Qinghai Province[J]. Journal of Northwest Forestry College, 2006, 21(2): 64-66.]
[26] 彭守璋, 赵传燕, 郑祥霖, 等. 祁连山青海云杉林生物量和碳储量空间分布特征[J]. 应用生态学报, 2011, 22(7): 1689-1694.
[26] [Peng Shouzhang, Zhao Chuanyan, Zheng Xianglin, et al. Spatial distribution of biomass and carbon storage of Spruce forest in Qinghai, Qilian Mountains[J]. Chinese Journal of Applied Ecology, 2011, 22(7): 1689-1694.]
[27] 薛晓娟, 李英年, 杜明远, 等. 祁连山东段南麓不同海拔土壤有机质及全氮的分布状况[J]. 冰川冻土, 2009, 31(4): 642-649.
[27] [Xue Xiaojuan, Li Yingnian, Du Mingyuan, et al. Distribution of soil organic matter and total nitrogen at different elevations at the southern foot of the eastern Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2009, 31(4): 642-649.]
[28] Zhao C Y, Nan Z R, Cheng G D, et al. GIS-assisted modeling of the spatial distribution of Qinghai spruce (Picea crassifolia) in the Qilian Mountains, northwestern China based on biophysical parameters[J]. Ecological Modeling, 2006, 191: 487-500.
[29] Tian Q Y, He Z B, Xiao S C, et al. Response of stem radial growth of Qinghai spruce(Picea crassifolia) to environmental factors in the Qilian Mountains of China[J]. Dendrochronologia, 2017, 44: 76-83.
[30] 张广帅, 邓浩俊, 杜锟, 等. 泥石流频发区山地不同海拔土壤化学计量特征——以云南省小江流域为例[J]. 生态学报, 2016, 36(3): 675-687.
[30] [Zhang Guangshuai, Deng Haojun, Du Kun, et al. Stoichiometric characteristics of soil at different elevations in an area with frequent debris flow: A case study of Xiaojiang Basin, Yunnan Province[J]. Acta Ecologica Sinica, 2016, 36(3): 675-687.]
[31] 邱巡巡, 曹广超, 张卓, 等. 高寒农田土壤有机碳和全氮密度垂直分布特征及其与海拔的关系[J]. 土壤通报, 2022, 53(3): 623-630.
[31] [Qiu Xunxun, Cao Guangchao, Zhang Zhuo, et al. Vertical distribution characteristics of soil organic carbon and total nitrogen density in alpine farmland and their relationship with altitude[J]. Chinese Journal of Soil Science, 2022, 53(3): 623-630.]
[32] 解宪丽, 孙波, 周慧珍, 等. 中国土壤有机碳密度和储量的估算与空间分布分析[J]. 土壤学报, 2004, 41(1): 35-43.
[32] [Xie Xianli, Sun Bo, Zhou Huizhen, et al. Estimation and spatial distribution of soil organic carbon density and storage in China[J]. Acta Pedologica Sinica, 2004, 41(1): 35-43.]
[33] 秦海龙, 付旋旋, 卢瑛, 等. 广西猫儿山不同海拔土壤碳氮磷生态化学计量特征[J]. 应用生态学报, 2019, 30(3): 711-717.
[33] [Qin Hailong, Fu Xuanxuan, Lu Ying, et al. Ecological stoichiometry of soil carbon, nitrogen and phosphorus at different elevations in Maoer Mountain, Guangxi[J]. Chinese Journal of Applied Ecology, 2019, 30(3): 711-717.]
[34] 王长庭, 龙瑞军, 曹广民, 等. 三江源地区主要草地类型土壤碳氮沿海拔变化特征及其影响因素[J]. 植物生态学报, 2006, 30(3): 441-449.
[34] [Wang Changting, Long Ruijun, Cao Guangmin, et al. Characteristics and influencing factors of soil carbon and nitrogen in main grassland types in the Headwaters of Three Rivers[J]. Chinese Journal of Plant Ecology, 2006, 30(3): 441-449.]
[35] 周玉荣, 于振良, 赵士洞. 我国主要森林生态系统碳贮量和碳平衡[J]. 植物生态学报, 2000, 24(5): 518-522.
[35] [Zhou Yurong, Yu Zhenliang, Zhao Shidong. Carbon storage and balance in the main forest ecosystem[J]. Acta Phytoecologica Sinica, 2000, 24(5): 518-522.]
[36] 王金叶, 车克钧, 蒋志荣. 祁连山青海云杉林碳平衡研究[J]. 西北林学院学报, 2000, 15(1): 9-14.
[36] [Wang Jinye, Che Kejun, Jiang Zhirong. Study on carbon balance of spruce forest in Qilian Mountains[J]. Journal of Northwest Forestry University, 2000, 15(1): 9-14.]
[37] 申家朋, 张文辉, 李彦华, 等. 陇东黄土高原沟壑区刺槐和油松人工林的生物量和碳密度及其分配规律[J]. 林业科学, 2015, 51(4): 1-7.
[37] [Shen Jiapeng, Zhang Wenhui, Li Yanhua, et al. Biomass and carbon density of Robinia pseudoacacia and Pinus tabulaeformis plantations in the Loess Plateau of eastern Gansu Province[J]. Scientia Silvae Sinicae, 2015, 51(4): 1-7.]
Outlines

/