Study on tensile mechanical properties of alfalfa roots and the influencing factors
Received date: 2022-04-16
Revised date: 2022-10-14
Online published: 2023-03-08
We analyzed the tensile properties and its influencing factors of a single root of the pioneer herbaceous plant alfalfa (Medicago sativa Linn.). Alfalfa roots with different root diameters and lengths were selected for indoor single-root tensile tests under different loading rates. The tensile force and tensile strength of a single root were estimated quantitatively for different root diameters, root lengths, and loading rates. The results showed loading rate had a significant effect on the tensile force and tensile strength of alfalfa roots (P<0.05). For a root diameter less than 3 mm, the tensile force and tensile strength reached their maximum at the loading rate of 500 mm·min-1. However, when the root diameter was relatively thick, the tensile force and tensile strength of alfalfa roots reached their maximum at the loading rate of 100 mm·min-1. No significant difference between root length, tensile force, and tensile strength of alfalfa root was observed (P<0.05). The root diameter of alfalfa showed a significant influence on root tensile force and tensile strength (P<0.001). The root diameter was positively correlated with root tensile strength by a power function (R2=0.380, P<0.001) and negatively correlated with root tensile strength by a power function (R2=0.363, P<0.001). The regression model about the impact of various factors on the alfalfa root tensile force and tensile strength showed that root diameter was the main factor affecting the tensile properties.
Key words: alfalfa; tensile mechanical property; loading rate; root length; root diameter
Zhengjun MAO , Mimi GENG . Study on tensile mechanical properties of alfalfa roots and the influencing factors[J]. Arid Zone Research, 2023 , 40(2) : 235 -246 . DOI: 10.13866/j.azr.2023.02.08
[1] | Hu X S, Brierley G, Zhu H L, et al. An exploratory analysis of vegetation strategies to reduce shallow landslide activity on loess hillslopes, Northeast Qinghai-Tibet Plateau, China[J]. Journal of Mountain Science, 2013, 10(4): 668-686. |
[2] | Fan C C, Su C F. Role of roots in the shear strength of root-reinforced soils with high moisture content[J]. Ecological Engineering, 2008, 33(2): 157-166. |
[3] | 栗岳洲, 付江涛, 胡夏嵩, 等. 土体粒径对盐生植物根-土复合体抗剪强度影响的试验研究[J]. 岩石力学与工程学报, 2016, 35(2): 403-412. |
[3] | [Li Yuezhou, Fu Jiangtao, Hu Xiasong, et al. Experimental study of the influence of grain size on the shear strength of rooted soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2): 403-412.] |
[4] | Li Q, Liu G B, Zhang Z, et al. Effect of root architecture on structural stability and erodibility of topsoils during concentrated flow in hilly Loess Plateau[J]. Chinese Geographical Science, 2015, 25(6): 757-764. |
[5] | Comino E, Marengo P. Root tensile stregth of three shrub species: Rosa canica, Cotoneaster dammeri and Jumiperus horizontalis: Soil reinforcement estimation by laboratory[J]. Catena, 2010, 82(3): 227-235. |
[6] | Zhang C B, Zhou X, Jiang J, et al. Root moisture content influence on root tensile tests of herbaceous plants[J]. Catena, 2019, 172: 140-147. |
[7] | Zhou Y Y, Wang X M. Mesomechanics characteristics of soil reinforcement by plant roots[J]. Bulletin of Engineering Geology & the Environment, 2019, 78(5): 3719-3728. |
[8] | 付江涛, 余冬梅, 李晓康, 等. 柴达木盆地盐湖区盐生植物根-土复合体物理力学性质指标概率统计分析[J]. 岩石力学与工程学报, 2020, 39(8): 1696-1709. |
[8] | [Fu Jiangtao, Yu Dongmei, Li Xiaokang, et al. Statistical probability analysis of the physical index of rooted soil in Qiadam basin[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(8): 1696-1709.] |
[9] | Lbmann M T, Tonin R, Wellstein C, et al. Determination of the surface-mat effect of grassland slopes as a measure for shallow slope stability[J]. Catena, 2020, 187: 104256. |
[10] | 白潞翼, 刘静, 胡晶华, 等. 紫穗槐直根力学性质研究[J]. 干旱区研究, 2021, 38(4): 1111-1119. |
[10] | [Bai Luyi, Liu Jing, Hu Jinghua, et al. Deformation characteristics of the straight roots of Amorpha fruticosa[J]. Arid Zone Research, 2021, 38(4): 1111-1119.] |
[11] | Veylon G, Ghestem M, Stokes A, et al. Quantification of mechanical and hydric components of soil reinforcement by plant roots[J]. Canadian Geotechnical Journal, 2015, 52(11): 1839-1849. |
[12] | Yildiz A, Graf F, Rickli C, et al. Determination of the shearing behaviour of root-permeated soils with a large-scale direct shear apparatus[J]. Catena, 2018, 166: 98-113. |
[13] | 陈丽华, 余新晓, 宋维峰, 等. 林木根系固土力学机制[M]. 北京: 科学出版社, 2008: 1-9. |
[13] | [Chen Lihua, Yu Xinxiao, Song Weifeng, et al. Mechanical Mechanism of Soil Fixation by Forest Roots[M]. Beijing: Science Press, 2008: 1-9.] |
[14] | De Baets S, Poesen J, Reubens B, et al. Root tensile strength and root distribution of typical mediterranean plant species and their contribution to soil shear strength[J]. Plant Soil, 2008, 305(2): 207-226. |
[15] | 雷相科, 张雪彪, 杨启红, 等. 植物根系抗拉力学性能研究进展[J]. 浙江农林大学学报, 2016, 33(4): 703-711. |
[15] | [Lei Xiangke, Zhang Xuebiao, Yang Qihong, et al. Research progress on the tensile mechanical properties of plant roots[J]. Journal of Zhejiang A & F University, 2016, 33(4): 703-711.] |
[16] | Capilleri P P, Cuomo M, Motta E, et al. Experimentalinvestigation of root tensile strength for slope stabilization[J]. Indian Geotechnical Journal, 2019, 49(6): 687-697. |
[17] | 周林虎, 徐志闻, 周国英, 等. 青藏铁路沱沱河段取土场草本根系力学强度试验[J]. 干旱区研究, 2020, 37(5): 1353-1361. |
[17] | [Zhou Linhu, Xu Zhiwen, Zhou Guoying, et al. Mechanical strength test of herb roots on the earth-borrowed area of Tuotuohe River section of Qinghai-Tibet Railway[J]. Arid Zone Research, 2020, 37(5): 1353-1361.] |
[18] | 刘亚斌, 李淑霞, 余冬梅, 等. 西宁盆地黄土区典型草本植物单根抗拉力学特性试验[J]. 农业工程学报, 2018, 34(15): 157-166. |
[18] | [Liu Yabin, Li Shuxia, Yu Dongmei, et al. Experiment on single root tensile mechanical properties of typical herb species in loess region of Xining Basin[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(15): 157-166.] |
[19] | 李可, 朱海丽, 宋路, 等. 青藏高原两种典型植物根系抗拉特性与其微观结构的关系[J]. 水土保持研究, 2018, 25(2): 240-249. |
[19] | [Li Ke, Zhu Haili, Song Lu, et al. Relationship between tensile properties and microstructure of two typical plant roots in the Qinghai-Tibet Plateau[J]. Research of Soil and Water Conservation, 2018, 25(2): 240-249.] |
[20] | 张玉, 朱海丽, 张珂, 等. 3种滨河植物单根抗拉特性与其微观结构关系[J]. 干旱区研究, 2022, 39(2): 572-583. |
[20] | [Zhang Yu, Zhu Haili, Zhang Ke, et al. Relationship between tensile properties and microstructure of single root of three riparian plants[J]. Arid Zone Research, 2022, 39(2): 572-583.] |
[21] | Boldrin D, Leung A K, Bengough A G. Root biomechanical properties during establishment of woody perennials[J]. Ecological Engineering, 2017, 109: 196-206. |
[22] | 姚文艺, 刘国彬. 新时期黄河流域水土保持战略目标的转变与发展对策[J]. 水土保持通报, 2020, 40(5): 333-340. |
[22] | [Yao Wenyi, Liu Guobin. Strategic goal change and development countermeasures of soil and water conservation in Yellow River Basin in new period[J]. Bulletin of Soil and Water Conservation, 2020, 40(5): 333-340.] |
[23] | Zhang C B, Chen L H, Jiang J, et al. Effects of gauge length and strain rate on the tensile strength of tree roots[J]. Trees, 2012, 26(5): 1577-1584. |
[24] | Yang Y, Chen L H, Li N. How gauge length and loading rate influence the root tensile strength of Betula platyphylla[J]. Journal of Soil and Water Conservation, 2016, 71(6): 460-466. |
[25] | 朱锦奇, 王云琦, 王玉杰, 等. 四川山矾根系分支节点对根系固土效益的影响[J]. 林业科学, 2021, 57(2): 115-125. |
[25] | [Zhu Jinqi, Wang Yunqi, Wang Yujie, et al. Effects of root branch of symplocos setchuensis on root soil reinforcement[J]. Scientia Silvae Sinicae, 2021, 57(2): 115-125.] |
[26] | 李宁, 陈丽华, 杨苑君. 油松、华北落叶松根系抗拉特性的影响因素[J]. 北京林业大学学报, 2015, 37(12): 77-84. |
[26] | [Li Ning, Chen Lihua, Yang Yuanjun. Factors influencing root tensile properties of Pinus Tabuliformis and Larix principis-rupprechtii[J]. Journal of Beijing Forestry University, 2015, 37(12): 77-84.] |
[27] | 唐菡, 谌芸, 刘枭宏, 等. 喀斯特坡地拉巴豆地埂篱根及根-土复合体力学特性[J]. 生态学报, 2019, 39(16): 6114-6125. |
[27] | [Tang Han, Chen Yun, Liu Xiaohong, et al. Study on the mechanic features of root and root-soil matrix of Dolichos lablab L. hedgerows on the slopes of the karst area[J]. Acta Ecologica Sinica, 2019, 39(16): 6114-6125.] |
[28] | 刘子壮, 高照良, 杜峰, 等. 黄土高原高速公路护坡植物根系分布及力学特性研究[J]. 水土保持学报, 2014, 28(4): 66-71. |
[28] | [Liu Zizhuang, Gao Zhaoliang, Du Feng, et al. Study on distribution and mechanical properties of plant roots for highway slope protection in Loess Plateau[J]. Journal of Soil and Water Conservation, 2014, 28(4): 66-71.] |
[29] | 钟荣华, 鲍玉海, 贺秀斌, 等. 三峡水库消落带4种草本根系抗拉特性及根系粘聚力[J]. 水土保持学报, 2015, 29(4): 188-194. |
[29] | [Zhong Ronghua, Bao Yuhai, He Xiubin, et al. Root tensile properties and root cohesion of 4 herbaceous plant species in the Riparian Zone of Three Gorges Reservoir[J]. Journal of Soil and Water Conservation, 2015, 29(4): 188-194.] |
[30] | 黄广杰, 段青松, 李建兴, 等. 三江并流区水库消落带5种草本根系形态及抗拉特性[J]. 水土保持研究, 2022, 29(3): 389-395. |
[30] | [Huang Guangjie, Duan Qingsong, Li Jianxing, et al. Root morphology and tensile characteristics of five kinds of herbs in reservoirs fluctuating zone of three parallel rivers[J]. Research of Soil and Water Conservation, 2022, 29(3): 389-395.] |
[31] | Wang Chenglong, Zhang Xin, Liu Jing, et al. The profiles and tensile strength on straight roots of plants withstand transient tensile injured after self-repair[J]. Sciencific Report, 2020, 10(1): 11468. |
[32] | 胡晶华, 刘静, 白潞翼, 等. 沙柳直根抗拉特性对循环荷载的响应[J]. 干旱区研究, 2022, 39(3): 900-907. |
[32] | [Hu Jinghua, Liu Jing, Bai Luyi, et al. Straight root tensile properties of o Salix psammophila species in response to cyclic loading[J]. Arid Zone Research, 2022, 39(3): 900-907.] |
[33] | 刘昌义, 胡夏嵩, 赵玉娇, 等. 寒旱环境草本与灌木植物单根拉伸试验强度特征研究[J]. 工程地质学报, 2017, 25(1): 1-10. |
[33] | [Liu Changyi, Hu Xiasong, Zhao Yujiao, et al. Strength characteristics of single root tensile test of herbs and shurbs in cold and arid environment[J]. Journal of Engineering Geology, 2017, 25(1): 1-10.] |
[34] | Abdi Ehsan, Saleh Hamid R, Majnonian Baris, et al. Soil fixation and erosion control by Haloxylon persicum roots in arid lands, Iran[J]. Journal of Arid Land, 2019, 11(1): 86-96. |
[35] | 李会科, 王忠林, 贺秀贤. 地埂花椒林根系分布及力学强度测定[J]. 水土保持研究, 2000, 7(1): 38-41. |
[35] | [Li Huike, Wang Zhonglin, He Xiuxian. Root systems distribution of prickly ash in terrace edge and determination of their strength of force[J]. Research of Soil and Water Conservation, 2000, 7(1): 38-41.] |
[36] | 田佳, 刘耀辉. 华北地区几种常用边坡绿化植物的根系力学特性研究[J]. 中国水土保持, 2007, 307(10): 34-36. |
[36] | [Tian Jia, Liu Yaohui. Study on root mechanical characteristics of several commonly used slope greening plants in North China[J]. Soil And Water Conservation In China, 2007, 307(10): 34-36.] |
[37] | 李晓凤, 陈丽华, 王萍花. 华北落叶松根系抗拉力学特性[J]. 中国水土保持科学, 2012, 10(1): 82-87. |
[37] | [Li Xiaofeng, Chen Lihua, Wang Pinghua. Tensile mechanical properties of roots of Larix principis-rupprechtii[J]. Science of Soil and Water Conservation, 2012, 10(1): 82-87.] |
[38] | 王剑敏, 沈烈英, 赵广琦. 中亚热带优势灌木根系对土壤抗剪切力的影响[J]. 南京林业大学学报(自然科学版), 2011, 35(2): 47-50. |
[38] | [Wang Jianmin, Shen Lieying, Zhao Guangqi. Effects of the root systems of dominant shrub species in mid-subtropical forest on soil anti-shearing strength enhancement[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2011, 35(2): 47-50.] |
[39] | 刘小光. 林木根系与土壤摩擦锚固性能研究[D]. 北京: 北京林业大学, 2013. |
[39] | [Liu Xiaoguang. Study on the Friction and Anchorage Characteristics Between Root System and Soil[D]. Beijing: Beijing Forestry University, 2013.] |
[40] | 田佳. 植物护坡原理与数值模拟研究[M]. 银川: 宁夏人民出版社, 2021: 1-28. |
[40] | [Tian Jia. Study on Principle and Numerical Simulation of Plant Slope Protection[M]. Yinchuan: Ningxia People’s Publishing House, 2021: 1-28.] |
[41] | 赵丽兵, 张宝贵. 紫花苜蓿和马唐根的生物力学性能及相关因素的试验研究[J]. 农业工程学报, 2007, 23(9): 7-12. |
[41] | [Zhao Libing, Zhang Baogui. Experimental study on root bio-mechanics and relevant factors of Medicago sativa and Digitaria sanguinalis[J]. Journal of Agricultural Engineering, 2007, 23(9): 7-12.] |
[42] | 吕春娟. 乔木根系抗拉力学特性及其与化学成分关系[D]. 北京: 北京林业大学, 2013. |
[42] | [Lv Chunjuan. Tensile Mechanical Properties and Relation with Chemical Components of Tree Root[D]. Beijing: Beijing Forestry University, 2013.] |
[43] | 杨吉华, 张光灿, 刘霞, 等. 紫花苜蓿保持水土效益的研究[J]. 土壤侵蚀与水土保持学报, 1997, 3(2): 91-96. |
[43] | [Yang Jihua, Zhang Guangcan, Liu Xia, et al. Study on benefits of alfalfa conservating soil and water[J]. Journal of Soil Erosion and Soil and Water Conservation, 1997, 3(2): 91-96.] |
[44] | 周霞, 魏杨, 李东嵘, 等. 黄土区紫花苜蓿根系对土体抗剪性能的影响[J]. 中国水土保持科学, 2019, 17(2): 53-59. |
[44] | [Zhou Xia, Wei Yang, Li Dongrong, et al. Strengthening effects of alfalfa roots on soil shear resistance in loess region[J]. Science of Soil and Water Conservation, 2019, 17(2): 53-59.] |
[45] | 周霞, 李东嵘, 蒋静, 等. 紫花苜蓿根系拉拔试验研究[J]. 人民长江, 2019, 50(7): 185-188. |
[45] | [Zhou Xia, Li Dongrong, Jiang Jing, et al. Study on anti-pulling test of alfalfa root system[J]. Yangtze River, 2019, 50(7): 185-188.] |
[46] | 雎卯民. 临潼县志[M]. 上海: 上海人民出版社, 1991: 100-123. |
[46] | [Ju Maomin. Lintong County Records[M]. Shanghai: Shanghai People’s Publishing House, 1991: 100-123.] |
[47] | 苏雪萌, 刘俊娥, 周正朝, 等. 黄土丘陵区不同植物根系抗拉力学特性[J]. 水土保持研究, 2019, 26(3): 259-264. |
[47] | [Su Xuemeng, Liu Jun’e, Zhou Zhengchao, et al. Root tensile and mechanical properties of three typical plants in the Loess Hilly Region[J]. Research of Soil and Water Conservation, 2019, 26(3): 259-264.] |
[48] | Cofie P, Koolen A J. Test speed and other factors affecting the measurements of tree root properties used in soil reinforcement models[J]. Soil & Tillage Research, 2001, 63(1-2): 51-56. |
[49] | Burroughs E R, Thomas B R. Declining Root Strength in Douglas-fir After Felling as a Factor in Slope Stability[M]. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, 1977. |
[50] | Nilaweera N S, Nutalaya P. Role of tree roots in slope stabilisation[J]. Bulletin of Engineering Geology and the Environment, 1999, 57(4): 337-342. |
[51] | Operstein V, Frydman S. The influence of vegetation on soil strength[J]. Ground Improvement, 2000, 4(2): 81-89. |
[52] | Bischetti G B, Chiaradia E A, Simonato T, et al. Root strength and root area ratio of forest species in Lombardy (Northern Italy)[J]. Plant Soil, 2005, 278(1-2): 11-22. |
[53] | Bischetti G B, Chiaradia E A, Epis T, et al. Root cohesion of forest species in the Italian Alps[J]. Plant Soil, 2009, 324(1-2): 71-89. |
[54] | Mattia C, Bischetti G B, Gentile F. Biotechnical characteristics of root systems of typical Mediterranean species[J]. Plant Soil, 2005, 278(1-2): 23-32. |
[55] | Tosi M. Root tensile strength relationships and their slope stability implications of three shrub species in the northern Apennines (Italy)[J]. Geomorphology, 2007, 87(4): 268-283. |
[56] | 欧阳前超, 魏杨, 周霞, 等. 土石山区护坡草本植物根系抗拉力学特性[J]. 中国水土保持科学, 2017, 15(4): 35-41. |
[56] | [Ouyang Qianchao, Wei Yang, Zhou Xia, et al. Root tensile properties of the herbaceous plants for slope protection in earth-rocky mountain area, northern China[J]. Science of Soil and Water Conservation, 2017, 15(4): 35-41.] |
[57] | 吕春娟, 陈丽华, 周硕, 等. 油松根系固土的基本力学特性[J]. 水土保持学报, 2011, 25(5): 17-20, 25. |
[57] | [Lyu Chunjuan, Chen Lihua, Zhou Shuo, et al. Root basic mechanical properties of soil reinforcemnet of Pinus tabulaeformis[J]. Journal of Soil and Water Conservation, 2011, 25(5): 17-20, 25.] |
[58] | 吕春娟, 陈丽华, 周硕, 等. 不同乔木根系的抗拉力学特性[J]. 农业工程学报, 2011, 27(S1): 329-335. |
[58] | [Lyu Chunjuan, Chen Lihua, Zhou Shuo, et al. Root mechanical characteristics of different tree species[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(S1): 329-335.] |
[59] | 陈昌富, 刘怀星, 李亚平. 草根加筋土的室内三轴试验研究[J]. 岩土力学, 2007, 28(10): 2041-2045. |
[59] | [Chen Changfu, Liu Huaixing, Li Yaping. Laboratory triaxial test of grassroots reinforced soil[J]. Geotechnical Mechanics, 2007, 28(10): 2041-2045.] |
[60] | 杨果林. 现代加筋土技术应用与研究进展[J]. 力学与实践, 2002, 24(1): 9-17. |
[60] | [Yang Guolin. Application and research progress of modern reinforced soil technology[J]. Mechanics and Practice, 2002, 24(1): 9-17.] |
[61] | 周霞, 魏杨, 李东嵘, 等. 黄土区紫花苜蓿根系对土体抗剪性能的影响[J]. 中国水土保持科学, 2019, 17(2): 53-59. |
[61] | [Zhou Xia, Wei Yang, Li Dongrong, et al. Strengthening effects of alfalfa roots on soil shear resistance in loess region[J]. Science of Soil and Water Conservation, 2019, 17(2): 53-59.] |
[62] | 刘亚斌, 李淑霞, 余冬梅, 等. 西宁盆地黄土区典型草本植物单根抗拉力学特性试验[J]. 农业工程学报, 2018, 34(15): 157-166. |
[62] | [Liu Yabin, Li Shuxia, Yu Dongmei, et al. Experiment on single root tensile mechanical properties of typical herb species in loess region of Xining Basin[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(15): 157-166.] |
[63] | Ammann M, Boll A, Rickli C, et al. Significance of tree root decomposition for shallow landslides[J]. Forest Snow and Landscape Research, 2009, 82(79-94): 79. |
[64] | Hales T, Cole-Hawthorne C, Lovell L, et al. Assessing the accuracy of simple field based root strength measurements[J]. Plant Soil, 2013, 372(1-2): 553-565. |
[65] | Preti F, Giadrossich F. Root reinforcement and slope bioengineering stabilization by Spanish broom (Spartium junceum L.)[J]. Hydrology and Earth System Sciences, 2009, 13(9): 1713-1726. |
/
〈 | 〉 |