Weather and Climate

Application of FY-4A satellite data in short-time severe precipitation of Ningxia

  • Jian SHAO ,
  • Suzhao ZHANG ,
  • Min CHEN ,
  • Qiang LI ,
  • Youjiong ZHENG ,
  • Yao CHENG ,
  • Ning MA
Expand
  • 1. Key Laboratory for Meteorological Disaster Monitoring and Early Warning and Risk Management of Characteristic Agriculture in Arid Regions, China Meteorological Administration, Yinchuan 750002, Ningxia, China
    2. Yinchuan Meteorological Bureau, Yinchuan 750002, Ningxia, China
    3. Ningxia Key Laboratory for Meteorological Disaster Prevention and Reduction, Yinchuan 750002, Ningxia, China
    4. Ningxia Meteorological Observatory, Yinchuan 750002, Ningxia, China
    5. Ningxia Meteorological Information Center, Yinchuan 750002, Ningxia, China

Received date: 2022-08-29

  Revised date: 2022-10-15

  Online published: 2023-03-08

Abstract

By using FY-4A satellite data and artificial observation data of recent (2018-2020) severe precipitation cases in Ningxia, four different FY-4A satellite product types are examined in terms of their availability. Results show that: (1) The data transmission rate and physical preservation of FY-4A are sufficient to support real-time monitoring and early warning services; (2) The five kinds of products i.e., Cloud Type (CLT), Cloud Phase (CLP), Cloud Top Height (CTH), Quantitative Rainfall-Rate Estimation (QPE), and Tropopause Folding Depth (TFTP_Z_depth), have different performances in the case of severe convective weathers in Ningxia. Among them, CLT and CLP have good availability, making it possible to determine the type of cloud more accurately. However, both CTH and QPE have large errors and tend to be smaller, so they need to be revised in conjunction with other means. The relationship between CTT or TFTP_Z_depth products and recent severe precipitation is obvious. The high value of CTH is conducive to the occurrence of heavy precipitation but is not a necessary condition. Overall, the FY-4A satellite has certain usability and reference in severe convective weather in Ningxia, which can provide better data support for convective weather discrimination and artificial influence on weather operation.

Cite this article

Jian SHAO , Suzhao ZHANG , Min CHEN , Qiang LI , Youjiong ZHENG , Yao CHENG , Ning MA . Application of FY-4A satellite data in short-time severe precipitation of Ningxia[J]. Arid Zone Research, 2023 , 40(2) : 163 -172 . DOI: 10.13866/j.azr.2023.02.01

References

[1] 井喜, 李栋梁, 李明娟, 等. 青藏高原东北侧一次突发性大暴雨环境场综合分析[J]. 高原气象, 2008, 27(1): 46-57.
[1] [Jing Xi, Li Dongliang, Li Mingjuan, et al. Synthetic analyses on environmental conditions of an abrupt heavy rainstorm on the Northeast side of Tibetan Plateau[J]. Plateau Meteorology, 2008, 27(1): 46-57.]
[2] 杨莲梅, 关学锋, 张迎新. 亚洲中部干旱区降水异常的大气环流特征[J]. 干旱区研究, 2018, 35(2): 249-259.
[2] [Yang Lianmei, Guan Xuefeng, Zhang Yingxing. Study on atmospheric circulation characteristics of precipitation anomalies in arid region of Central Asia[J]. Arid Zone Research, 2018, 35(2): 249-259.]
[3] 邵建, 胡文东, 杨有林, 等. 基于图形学的致旱天气系统自动识别技术[J]. 干旱区研究, 2019, 36(3): 664-669.
[3] [Shao Jian, Hu Wendong, Yang Youlin, et al. Automatic recognition technology of weather systems resulting in drought based on graphics[J]. Arid Zone Research, 2019, 36(3): 664-669.]
[4] 刘治国, 陶健红, 杨建才, 等. 冰雹云和雷雨云单体VIL演变特征对比分析[J]. 高原气象, 2008, 27(6): 1363-1374.
[4] [Liu Zhiguo, Tao Jianhong, Yang Jiancai, et al. Contrast analyses on variation characters of vertically integrated liquid water content about hail cloud cell and thundercloud cell[J]. Plateau Meteorology, 2008, 27(6): 1363-1374.]
[5] 张之贤, 张强, 赵庆云, 等. “8·8”舟曲特大山洪泥石流灾害天气特征分析[J]. 高原气象, 2013, 32(1): 290-297.
[5] [Zhang Zhixian, Zhang Qiang, Zhao Qingyun, et al. Analyses on disaster weather characteristics of masssive mudslide in Zhouqu Gansu on 8 August 2010[J]. Plateau Meteorology, 2013, 32(1): 290-297.]
[6] 许东蓓, 许爱华, 肖玮, 等. 中国西北四省区强对流天气形势配置及特殊性综合分析[J]. 高原气象, 2015, 34(4): 973-981.
[6] [Xu Dongpei, Xu Aihua, Xiao Wei, et al. Comprehensive analysis on the severe convective weather situation configuration and its particularity in Northwest China[J]. Plateau Meteorology, 2015, 34(4): 973-981.]
[7] Matrosov S Y, Heymsfield A J. Estimating ice content and extinction in precipitating cloud systems from Cloud-Sat radar measurements[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D00A05): 1-8.
[8] 范思睿, 王维佳. 利用FY-4A卫星反演产品对飞机增雨作业的分析[J]. 高原山地气象研究, 2018, 38(4): 60-66, 84.
[8] [Fan Sirui, Wang Weijia, et al. A case analysis of FY-4A satellite-retrieved of artificial precipitation enhancement operation[J]. Plateau and Mountain Meteorology Research, 2018, 38(4): 60-66, 84.]
[9] 徐小红, 余兴, 朱延年, 等. 6·23龙卷FY-2G卫星云微物理特征分析[J]. 高原气象, 2018, 37(6): 1737-1748.
[9] [Xu Xiaohong, Yu Xing, Zhu Yannian, et al. Cloud microphysical properties of a tornado revealed by FY-2G geostationary satellite[J]. Plateau Meteorology, 2018, 37(6): 1737-1748.]
[10] 张志清, 陆风, 方翔, 等. FY-4卫星应用和发展[J]. 上海航天, 2017, 34(4): 8-19.
[10] [Zhang Zhiqing, Lu Feng, Fang Xiang, et al. Application and development of FY-4 meteorological satellite[J]. Aerospace Shanghai, 2017, 34(4): 8-19.]
[11] 王清平, 吴晓京, 陈阳权, 等. FY-4A卫星数据可视化及应用[J]. 气象科技, 2020, 47(3): 502-507.
[11] [Wang Qingping, Wu Xiaojing, Chen Yangquan, et al. Visualization and application of FY-4A satellite data[J]. Meteorological Science and Technology, 2020, 47(3): 502-507.]
[12] 黄荣, 刘日胜, 刘国忠, 等. FY3极轨卫星资料在暴雨短时预报中的应用分析[J]. 气象研究与应用, 2018, 39(2): 41-44, 71, 144.
[12] [Huang Rong, Liu Risheng, Liu Guozhong, et al. Application of FY3 satellite data in short-term rainstorm forecast[J]. Journal of Meteorological Research and Application, 2018, 39(2): 41-44, 71, 144.]
[13] 邵建, 任小芳, 王勇, 等. 一次雨转暴雪天气过程卫星云图中尺度特征分析[J/OL]. 宁夏大学学报(自然科学版): 1-7[2023-02-14]. http://kns.cnki.net/kcms/detail/64.1006.N.20210929.0858.004.html.
[13] [Shao Jian, Ren Xiaofang, Wang Yong, et al. Analysis on mesoscale characteristics of satellite cloud images for a rain to blizzard weather process[J]. Journal of Ningxia University(Naturnal Science Edition), 1-7[2023-02-14].http://kns.cnki.net/kcms/detail/64.1006.N.20210929.0858.004.html. ]
[14] 丁明月, 王俐俐, 辛渝, 等. 基于CloudSat卫星资料对中亚低涡暴雨个例的诊断分析和数值模拟[J]. 干旱区研究, 2020, 37(4): 936-946.
[14] [Ding Yueming, Wang Lili, Xin Yu, et al. Diagnostic analysis and numerical simulation of a Central Asian vortex rainstorm based on CloudSat satellite data[J]. Arid Zone Research, 2020, 37(4): 936-946.]
[15] 吴晓京, 朱小祥, 毛紫阳, 等. 风云二号气象卫星红外观测在云团降水监测中的应用[J]. 海洋气象学报, 2020, 39(3): 1-10.
[15] [Wu Xiaojing, Zhu Xiaoxiang, Mao Ziyang, et al. Algorithm design of convective precipitation monitoring and early warning sercice using FY-2 infrared data[J]. Journal of Marine Meteorology, 2020, 39(3): 1-10.]
[16] 何立富, 陈双, 郭云谦. 台风利奇马(1909)极端强降雨观测特征及成因[J]. 应用气象学报, 2020, 31(5): 513-526.
[16] [He Lifu, Chen Shuang, Guo Yunqian, et al. Obtervation characteristics and synoptic mechanisms of typhoon lekima extreme rainfall in 1909[J]. Journal of Applied Meteorological Science, 2020, 31(5): 513-526.]
[17] 张一平, 俞小鼎, 王迪, 等. 河套及周边地区干线触发对流天气特征初步分析[J]. 高原气象, 2021, 40(5): 1024-1037.
[17] [Zhang Yipping, Yu Xiaoding, Wang Di, et al. A preliminary analysis of the characteristics of drylines and its triggering convections in the Hetao and surrounding regions[J]. Plateau Meteorology, 2021, 40(5): 1024-1037.]
[18] 刘佳, 罗向阳. 风云二号多通道卫星数据对流单体检测[J]. 遥感学报, 2020, 24(8): 1023-1031.
[18] [Liu Jia, Luo Xiangyang. Detection of convective cells using multi-channel satellite data from FY-2[J]. Journal of Remote Sensing, 2020, 24(8): 1023-1031.]
[19] 陈宏, 杨晓君, 易笑园, 等. 北上台风“安比”后期两个阶段暴雨落区分布的差异性分析[J]. 高原气象, 2021, 40(5): 1087-1100.
[19] [Chen Hong, Yang Xiaojun, Yi Xiaoyuan, et al. Analysis of difference in distribution of rainstorms in the later two stages of northward-moving typhoon ampil[J]. Plateau Meteorology, 2021, 40(5): 1087-1100.]
[20] 魏栋, 刘丽伟, 田文寿, 等. 基于卫星资料的西北地区高原涡强降水分析[J]. 高原气象, 2021, 40(4): 829-839.
[20] [Wei Dong, Liu Liwei, Tian Wenshou, et al. Analysis of the heavy precipitation caused by plateau vortex in Northwest China based on satellite data[J]. Plateau Meteorology, 2021, 40(4): 829-839.]
[21] 罗敬宁, 刘立葳. 遥感大数据分布式技术研究与实现[J]. 应用气象学报, 2017, 28(5): 621-631.
[21] [Luo Jingning, Liu Liwei. Research and implementation of remote sensing big data distributed technology[J]. Journal of Applied Meteorological Science, 2017, 28(5): 621-631.]
[22] 江琪, 桂海林, 张天航, 等. 基于FY-4A卫星资料的中国区域网格化地表大气颗粒物浓度估算[J]. 气象, 2020, 46(10): 1297-1309.
[22] [Jiang Qi, Gui Hailin, Zhang Tianhang, et al. Estimation of gridding surface atmospheric particle matter concentration in China based on FY-4A satellite observation[J]. Meteorological Monthly, 2020, 46(10): 1297-1309.]
[23] 王继竹, 郭英莲, 徐双柱, 等. 湖北省卫星云图短时暴雨概率预报方法及应用[J]. 气象科技, 2014, 42(3): 460-465.
[23] [Wang Jizhu, Guo Yinglian, Xu Shuangzhu, et al. Application of satellite data in probabilistic forecasting for short-time rainstorms in Hubei Province[J]. Meteorological Science and Technology, 2014, 42(3): 460-465.]
[24] 闵文彬, 李宾, 彭俊, 等. 青藏高原东南部及其邻近地区FY-2E卫星晴空大气可降水量评估[J]. 长江流域资源与环境, 2015, 24(4): 625-631.
[24] [Min Wenbin, Li Bin, Peng Jun, et al. Evaluation of total precipitable water derived from FY-2E satellite data over the Southeast of Tibetan Plateau and its adjacent areas[J]. Resources and Environment in the Yangtze Basin, 2015, 24(4): 625-631.]
[25] 许梦婕, 鲍艳松, 许丹, 等. 基于FY-4A卫星数据反演气溶胶光学厚度及分析应用[J]. 中国环境科学, 2020, 40(12): 5162-5168.
[25] [Xu Mengjie, Bao Yansong, Xu Dan, et al. Retrieval of aerosol optical depth based on FY-4A satellite data and its analysis and application[J]. China Environmental Science, 2020, 40(12): 5162-5168.]
[26] 王雪芹, 徐卫红, 向朔育, 等. 基于FY-4A卫星资料分析暴雨云系特征[J]. 高原山地气象研究, 2020, 40(1): 36-40.
[26] [Wang Xueqin, Xu Weihong, Xiang Shuoyu, et al. Analysis of rainstorm cloud system characteristics based on FY-4A satellite data[J]. Plateau and Mountain Meteorology Research, 2020, 40(1): 36-40.]
[27] 祝存兄, 史飞飞, 乔斌, 等. 基于高分1号卫星数据的青海湖扩张及湖滨沙地变化特征分析[J]. 干旱区研究, 2022, 39(4): 1076-1089.
[27] [Zhu Cunxiong, Shi Feifei, Qiao Bin, et al. Analysis of Qinghai Lake expansion and lakeside sandy land change characteristics based on GF-1 satellite[J]. Arid Zone Research, 2022, 39(4): 1076-1089.]
[28] 阮永健, 吴秀芹. 基于GRACE和GLDAS的西北干旱区地下水资源量可持续性评价[J]. 干旱区研究, 2022, 39(3): 787-800.
[28] [Ruan Yongjian, Wu Xiuqin. Evaluation of groundwater resource sustainability based on GRACE and GLDAS in arid region of Northwest China[J]. Arid Zone Research, 2022, 39(3): 787-800.]
[29] 陈兴鹃, 黄淑娥, 樊建勇, 等. 基于FY-3A/VIRR卫星资料的江西省大雾遥感监测[J]. 气象研究与应用, 2018, 39(1): 91-95.
[29] [Chen Xingjuan, Huang Shu’e, Fan Jianyong, et al. Remote sensing monitoring of fog in Jiangxi based on FY-3A/VIRR satellite data[J]. Journal of Meteorological Research and Application, 2018, 39(1): 91-95.]
[30] 闵敏, 吴晓. 从FY-4A卫星遥感数据和GFS资料估算全天空状况下的地表长波辐射通量[J]. 气象, 2020, 46(3): 336-345.
[30] [Min Min, Wu Xiao. Wu Xiao. Estimating surface longwave radiation flux under all-sky condition from FY-4A and GFS data[J]. Meteorological Monthly, 2020, 46(3): 336-345.]
[31] 王素娟, 崔鹏, 张鹏, 等. FY-3C/VIRR海表温度产品及质量检验. 应用气象学报, 2020, 31(6): 729-739.
[31] [Wang Sujuan, Cui Peng, Zhang Peng, et al. FY-3C/VIRR sea surface temperature products and quality validation[J]. Journal of Applied Meteorological Science, 2020, 31(6): 729-739.]
[32] 徐丽娜, 申彦波, 李忠, 等. 基于概率密度匹配方法的FY-4A地表入射太阳辐射订正[J]. 高原气象, 2021, 40(4): 932-942.
[32] [Xu Lina, Shen Yanbo, Li Zhong, et al. Correction of FY-4A surface solar irradiance based on probability density function matching method[J]. Plateau Meteorology, 2021, 40(4): 932-942.]
[33] 姜红, 何清, 曾晓青, 等. 基于随机森林和卷积神经网络的FY-4A 号卫星沙尘监测研究[J]. 高原气象, 2021, 40(3): 680-689.
[33] [Jiang Hong, He Qing, Zeng Xiaoqin, et al. Sand and dust monitoring using FY-4A satellite data based on the random forests and convolutional neural networks[J]. Plateau Meteorology, 2021, 40(3): 680-689.]
[34] 周万福, 田建兵, 康小燕, 等. 基于FY-2卫星数据的青海东部春季不同类型降水过程云参数特征[J]. 干旱气象, 2018, 36(3): 431-437.
[34] [Zhou Wangfu, Tian Jianbing, Kang Xiaoyan, et al. Characteristics of retrieved cloud parameters during precipitation processes with different types in spring in eastern Qinghai[J]. Journal of Arid Meteorology, 2018, 36(3): 431-437.]
[35] 李浩, 邓军英, 刘岩, 等. 一次暴雨过程云中液态水微物理属性垂直分布[J]. 干旱区研究, 2015, 32(1): 161-167.
[35] [Li Hao, Deng Junying, Liu Yan, et al. Vertical distribution of microphysical properties of liquid water in cloud during a rainstorm[J]. Arid Zone Research, 2015, 32(1): 161-167.]
[36] 任素玲, 方翔, 卢乃锰, 等. 基于气象卫星的青藏高原低涡识别[J]. 应用气象学报, 2020, 30(3): 345-359.
[36] [Ren Sulin, Fang Xiang, Lu Naimeng, et al. Recognition method of the Tibetan Plateau vortex based on meteorological satellite data[J]. Journal of Applied Meteorological Science, 2020, 30(3): 345-359.]
[37] 张琪, 任景轩, 肖红茹, 等. 基于FY-4A卫星资料的四川盆地MCC初生和成熟阶段特征[J]. 大气科学, 2021, 45(4): 863-873.
[37] [Zhang Qi, Reng Jingxuan, Xiao Hongru, et al. Characteristics of MCC from convective initiation to mature stage over the Sichuan basin based on FY-4A satellite data[J]. Chinese Journal of Atmospheric Sciences, 2021, 45(4): 863-873.]
[38] 李帅, 陈勇航, 侯小刚, 等. FY-2F云量产品在新疆区域的评估及检验[J]. 干旱区研究, 2021, 38(4): 1031-1039.
[38] [Li Shuai, Chen Yonghang, Hou Xiaogang, et al. Evaluation of FY-2F satellite cloud products in Xinjiang[J]. Arid Zone Research, 2021, 38(4): 1031-1039.]
[39] 崔林丽, 郭巍, 葛伟强, 等. FY-4A卫星云顶参数精度检验及台风应用研究[J]. 高原气象, 2020, 39(1): 196-203.
[39] [Cui Linli, Guo Wei, Ge Weiqiang, et al. Comparisons of cloud top parameter of FY-4A satellite and its typhoon application research[J]. Plateau Meteorology, 2020, 39(1): 196-203.]
[40] 刘健, 崔鹏, 肖萌. FY-2G卫星冬夏云量产品偏差分析[J]. 应用气象学报, 2017, 28(2): 177-188.
[40] [Liu Jian, Cui Peng, Xiao Meng. The bias analysis of FY-2G cloud fraction in summer and winter[J]. Journal of Applied Meteorological Science, 2017, 28(2): 177-188.]
[41] 俞琳飞, 张永强, 张佳华, 等. 卫星降水产品在太行山区的适用性初步评估[J]. 高原气象, 2020, 39(4): 819-829.
[41] [Yu Linfei, Zhang Yongqiang, Zhang Guihua, et al. Preliminarily evaluate the applicability of satellite precipitation products over the Taihang Mountains[J]. Plateau Meteorology, 2020, 39(4): 819-829.]
[42] 梁进秋, 申彦波, 胡丽琴, 等. FY-4A地表太阳入射辐射产品在山西高原的适用性研究[J]. 气象, 2020, 46(12): 1575-1585.
[42] [Liang Jinqiu, Shen Yanbo, Hu Liqin, et al. Applicability of FY-4A surface solar irradiance products in the Loess Plateau of Shanxi[J]. Meteorological Monthly, 2020, 46(12): 1575-1585.]
[43] 薛筝筝, 黄玉学, 杨有林, 等. FY-2G卫星云量产品在宁夏的分析检验[J]. 气象水文海洋仪器, 2019, 36(2): 19-25.
[43] [Xue Zhengzheng, Huang Yuxue, Yang Youlin, et al. Analysis and test on cloud products of FY-2G satellite in Ningxia[J]. Meteorological, Hydrological and Marine Instruments, 2019, 36(2): 19-25.]
[44] 丁蕾锭, 卢涵宇, 卢天健, 等. FY2G卫星降水产品在云贵高原地区的效用评估[J]. 广西大学学报: 自然科学版, 2020, 44(6): 1691-1699.
[44] [Ding Leiding, Lu Hanyu, Lu Tianjian, et al. Effect evaluation of FY2G satellite precipitation products in Yunnan-Kweichow plateau[J]. Journal of Guangxi University(Natural Science Edition), 2020, 44(6): 1691-1699.]
[45] 王雅正, 杨元建, 刘超, 等. 风云三号卫星微波遥感土壤水分产品在山东地区的适用性分析[J]. 中国农业气象, 2021, 42(4): 318-329.
[45] [Wang Yazheng, Yang Jianyuan, Liu Chao, et al. Analysis on the applicability of Fengyun-3 satellite microwave remote sensing soil moisture products in Shandong[J]. Chinese Journal of Agrometeorology, 2021, 42(4): 318-329.]
[46] 杨纲, 郭鹏, 李西灿, 等. 风云卫星微波遥感土壤水分产品适用性验证分析[J]. 水土保持研究, 2020, 27(1): 104-111, 118.
[46] [Yang Gang, Guo Peng, Li Xican, et al. Assessment on applicability of soil moisture products of Fengyun satellite microwave remote sensing[J]. Research of Soil and Water Conservation, 2020, 27(1): 104-111, 118.]
[47] 闵文彬, 彭骏, 李施颖. 青藏高原FY-3C卫星积雪产品评估[J]. 国土资源遥感, 2021, 33(1): 145-151.
[47] [Min Wenbin, Peng Jun, Li Shiying. The evaluation of FY-3C snow products in the Tibetan Plateau[J]. Remote Sensing For Land & Resources, 2021, 33(1): 145-151.]
[48] 陈耀登, 沈洁, 范水勇, 等. FY-4A卫星云导风观测误差优化及同化效果影响研究[J]. 大气科学学报, 2021, 44(3): 418-427.
[48] [Chen Yaodeng, Shen Jie, Fan Shuiyong, et al. A study of the observational error statistics and assimilation applications of the FY-4A satellite atmospheric motion vector[J]. Transactions of Atmospheric Sciences, 2021, 44(3): 418-427.]
[49] 刘健, 王锡津. 主要卫星云气候数据集评述[J]. 应用气象学报, 2017, 28(6): 654-665.
[49] [Liu Jian, Wang Xijin, et al. Assessment on main kinds of satellite cloud climate datasets[J]. Journal of Applied Meteorological Science, 2017, 28(6): 654-665.]
[50] 农川, 尹球, 宋慈, 等. FY-4A静止气象卫星红外高光谱大气探测仪GIIRS探测灵敏度分析[J]. 红外与毫米波学报, 2021, 40(3): 353-362.
[50] [Nong Chuan, Yin Qiu, Song Ci, et al. Sensitivity analysis of the satellite infrared hyper-spectral atmospheric sounder GIIRS on FY-4A[J]. Journal of Infrared and Millimeter Waves, 2021, 40(3): 353-362.]
[51] 刘兆晨, 杨梅学, 万国宁, 等. 新型卫星降水产品在黄河源区的适用性分析[J]. 高原气象, 2021, 40(2): 403-410.
[51] [Liu Zhaochen, Yang Meixue, Wan Guoning, et al. Applicability of new satellites precipitation products in source region of Yellow River: Using SWAT model as an example[J]. Plateau Meteorology, 2021, 40(2): 403-410.]
[52] 马玉芬, 李如琦, 张萌, 等. AIRS辐射亮温在中亚地区的偏差分析及适用性[J]. 干旱区研究, 2021, 38(1): 12-21.
[52] [Ma Yufen, Li Ruqi, Zhang Meng, et al. Bias analysis and applicability evaluation of the atmospheric infrared sounder (AIRS) radiance in Central Asia[J]. Arid Zone Research, 2021, 38(1): 12-21.]
[53] 邵建. 宁夏暴雨特征及客观预报方法研究[D]. 兰州: 兰州大学, 2015.
[53] [Shao Jian. A Study on Rainstorm and Its Objective Forecasting Methods in Ningxia Area[D]. Lanzhou: Lanzhou University, 2015.]
[54] 邵建, 裴晓蓉, 刘娟, 等. 近53 a宁夏暴雨时空分布特征[J]. 干旱气象, 2015, 33(4): 595-601.
[54] [Shao Jian, Pei Xiaorong, Liu Juan, et al. Temporal and spatial distribution characteristics of rainstorms in Ningxia during 1961-2013[J]. Journal of Arid Meteorology, 2015, 33(4): 595-601.]
[55] 陈晓娟, 王咏青, 毛璐, 等. 贺兰山区两次极端暴雨动力作用数值模拟分析[J]. 干旱区研究, 2020, 37(3): 680-688.
[55] [Chen Xiaojuan, Wang Yongqin, Mao Lu, et al. Numerical simulation analysis of the dynamic effects of terrain on two extreme rainstorms on Helan Mountain[J]. Arid Zone Research, 2020, 37(3): 680-688.]
[56] 邵建, 闫军, 裴晓蓉, 等. 自组织神经网络算法在宁夏暴雨天气分型中的应用[J]. 干旱气象, 2018, 36(5): 852-857.
[56] [Shao Jian, Yan Jun, Pei Xiaorong, et al. Application of self-organizing maps method in rainstorm classification in Ningxia[J]. Journal of Arid Meteorology, 2018, 36(5): 852-857.]
[57] 闫军, 王黎娟, 纪晓玲, 等. 影响宁夏的热带气旋远距离暴雨特征和预报概念模型[J]. 热带气象学报, 2020, 36(1): 32-41.
[57] [Yan Jun, Wang Lijuan, Ji Xiaolin, et al. Characteristics and conceptual models of tropical-cyclone-induced remote precipitation event in Ningxia[J]. Journal of Tropical Meteorology, 2020, 36(1): 32-41.]
Outlines

/