Growth promotion and mechanism of arbuscular mycorrhizal fungi (AMF) on Ammopiptanthus mongolicus seedlings
Received date: 2022-07-05
Revised date: 2022-08-02
Online published: 2023-02-24
To solve the technical problems of underdeveloped root systems, poor regeneration, and low survival rate of transplanting and afforestation of Ammopiptanthus mongolicus seedlings, as well as the effective propagation and preservation of its resources. In this experiment, AMF were used to treat the roots of Ammopiptanthus mongolicus seedlings using different inoculation methods. The infection status of AMF, the changes in plant growth and biomass, the physiological characteristics of roots and leaves, the changes in rhizosphere soil enzyme activities, and their correlation with seedling growth and biomass were analyzed. This study aimed to explore the growth promotion and mechanism of root mycorrhization in Ammopiptanthus mongolicus. The results showed that AMF (Rhiaophagus intraradice, Funneliformis mosseae) could effectively infect the roots of Ammopiptanthus mongolicus seedlings and construct a mutualistic symbiont with their roots. The degree of affinity between different strains and host plants varies. (1) The growth of single and mixed inoculations was higher than that of non-inoculation (CK), which was mainly reflected in the relatively large plant height (34.7%-47.3%) and root length (32.7%-72.9%). Compared with single inoculation, mixed inoculation significantly increased the root projection area, root volume, root-shoot ratio, root dry weight, root surface area, biomass, and seedling quality index. (2) After AMF inoculation, the root activity, cation exchange capacity, and soluble protein content of the mixed inoculated seedlings (R. i+F. m) increased significantly by 338.7%, 177.2%, and 240.4% compared with the control. The nitrate reductase and alkaline phosphatase activities of the roots were also significantly higher than those of the single inoculated (R. i and F. m) and non-inoculated seedlings. Simultaneously, the net photosynthetic rate and soluble protein content in the leaves of seedlings under this treatment increased significantly by 237.5% and 54.3% compared with the control. (3) The activities of urease, alkaline phosphatase, and invertase in the rhizosphere soil of Ammopiptanthus mongolicus seedlings increased significantly using the three inoculation methods, and the enzyme activities of the three soils increased most significantly under the mixed inoculation treatment, surging by 564.7%, 145.8%, and 154.3%, respectively, compared with the control. The comprehensive analysis of the above indicators, AMF could stimulate the production and secretion of enzymes in the rhizosphere of seedlings and promote the cation exchange capacity and root activity by infecting the Ammopiptanthus mongolicus roots, which was helpful in enhancing the enzymatic effect and nutrient accumulation, such as proteins in the process of root metabolism, and affected and improved the photosynthetic metabolism and nutrient storage of seedlings, to promote the growth and biomass accumulation of roots and seedlings of Ammopiptanthus mongolicus.
Zixuan WANG , Tiantian XIE , Yaru WANG , Jieyan YANG , Xiuqing YANG . Growth promotion and mechanism of arbuscular mycorrhizal fungi (AMF) on Ammopiptanthus mongolicus seedlings[J]. Arid Zone Research, 2023 , 40(1) : 78 -89 . DOI: 10.13866/j.azr.2023.01.09
[1] | Smith Sally E, Andrew Smith F. Roles of arbuscular mycorrhizas in plant nutrition and growth: New paradigms from cellular to ecosystem scales[J]. Annual Review of Plant Biology, 2011, 62(1): 227-50. |
[2] | Steidinger B S, Crowther T W, Liang J. et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses[J]. Nature, 2019, 569(7756): 404-408. |
[3] | 吴楠, 张静, 王玥, 等. 积雪和丛枝菌根真菌网络对尖喙牻牛儿苗幼苗生长的影响[J]. 干旱区研究, 2018, 35(3): 624-632. |
[3] | [Wu Nan, Zhang Jing, Wang Yue, et al. Effects of snow cover and Arbuscular Mycorrhizal Fungi network on the seedling growth of Erodium oxyrrhynchum[J]. Arid Zone Research, 2018, 35(3): 624-632.] |
[4] | 申建波, 白洋, 伟中, 等. 根际生命共同体:协调资源、环境和粮食安全的学术思路与交叉创新[J]. 土壤学报, 2021, 58(4): 805-813. |
[4] | [Shen Jianbo, Bai Yang, Wei Zhong, et al. Rhizobiont: An interdisciplinary innovation and perspective for harmonizing resources, environment, and food security[J]. Acta Pedologica Sinica, 2021, 58(4): 805-813.] |
[5] | 储薇, 郭信来, 张晨, 等. 丛枝菌根真菌-植物-根际微生物互作研究进展与展望[J]. 中国生态农业学报, 2022, 30(11): 1709-1721. |
[5] | [Chu Wei, Guo Xinlai, Zhang Chen, et al. Research progress and future directions of arbuscular mycorrhizal fungi-plant-rhizosphere microbial interaction[J]. Chinese Journal of Eco-Agriculture, 2022, 30(11): 1709-1721.] |
[6] | Xie X, Lai W, Che X, et al. A SPX domain-containing phosphate transporter from Rhizophagus irregularis handles phosphate homeostasis at symbiotic interface of arbuscular mycorrhizas[J]. New Phytologist, 2022, 234(2): 650-671. |
[7] | 黄京华, 刘青, 李晓辉, 等. 丛枝菌根真菌诱导玉米根系形态变化及其机理[J]. 玉米科学, 2013, 21(3): 131-135, 139. |
[7] | [Huang Jinghua, Liu Qing, Li Xiaohui, et al. Mechanism of maize root morphology change induced by Arbuscular Mycorrhizal Fungi[J]. Journal of Maize Sciences, 2013, 21(3): 131-135, 139.] |
[8] | 郭军康, 董明芳, 丁永祯, 等. 根际促生菌影响植物吸收和转运重金属的研究进展[J]. 生态环境学报, 2015, 24(7): 1228-1234. |
[8] | [Guo Junkang, Dong Mingfang, Ding Yongzhen, et al. Effects of plant growth promoting rhizobacteria on plants heavy metal uptake and transport: A review[J]. Ecology and Environmental Sciences, 2015, 24(7): 1228-1234.] |
[9] | Bo S, Peng W, Xia R X. Effects of mycorrhizal fungi on phytate-phosphorus utilization in trifoliate orange (Poncirus trifoliata L. Raf) seedlings[J]. Acta Physiologiae Plantarum, 2014, 36(4): 1023-1032. |
[10] | Selosse M A, Richard F, He X H, et al. Mycorrhizal net-works: Des liaisons dangereuses?[J]. Trends in Ecology & Evolution, 2006, 21(11): 621-628. |
[11] | Wang B, Qiu Y L. Phylogenetic distribution and evolution of mycorrhizas in land plants[J]. Mycorrhiza, 2006, 16(5): 299-363. |
[12] | 祖艳群, 卢鑫, 湛方栋, 等. 丛枝菌根真菌在土壤重金属污染植物修复中的作用及机理研究进展[J]. 植物生理学报, 2015, 51(10): 1538-1548. |
[12] | [Zu Yanqun, Lu Xin, Zhan Fangdong, et al. A review on roles and mechanisms of Arbuscular Mycorrhizal Fungi in phytoremediation of heavy metals-polluted soils[J]. Plant Physiology Journal, 2015, 51(10): 1538-1548.] |
[13] | 王晓燕, 彭礼琼, 金则新. 模拟增温条件下接种AMF对夏蜡梅幼苗生长与光合生理特性的影响[J]. 生态学报, 2016, 36(16): 5204-5214. |
[13] | [Wang Xiaoyan, Peng Liqiong, Jin Zexin. Effects of AMF inoculation on growth and photosynthetic physiological characteristics of Sinocalycanthus chinensis under conditions of simulated warming[J]. Acta Ecologica Sinica, 2016, 36(16): 5204-5214.] |
[14] | Sonal Mathur, Sharma Mahaveer P, Anjana Jajoo. Improved photosynthetic efficacy of maize (Zea mays) plants with arbuscular mycorrhizal fungi (AMF) under high temperature stress[J]. Journal of Photochemistry & Photobiology B: Biology, 2018, 180: 149-154. |
[15] | Tuo X Q, Li S, Wu Q S, et al. Alleviation of waterlogged stress in peach seedlings inoculated with Funneliformis mosseae: Changes in chlorophyll and proline metabolism[J]. Scientia Horticulturae, 2015, 197: 130-134. |
[16] | Yagoob Habibzadeh, Alireza Pirzad, et al. Mohammad Reza Zardashti, Effects of Arbuscular Mycorrhizal Fungi on seed and protein yield under water-deficit stress in Mung Bean[J]. Agronomy Journal, 2013, 105(1): 79-84. |
[17] | 李芳, 徐丽娇, 谢伟, 等. 菌根化育苗对玉米生长和养分吸收的影响[J]. 植物营养与肥料学报, 2020, 26(1): 42-50. |
[17] | [Li Fang, Xu Lijiao, Xie Wei, et al. Effects of seedling mycorrhization on the growth and nutrient uptake of maize[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(1): 42-50.] |
[18] | Sa A, M k A, Emf B, et al. Alleviation of salt stress and changes in glycyrrhizin accumulation by arbuscular mycorrhiza in liquorice (Glycyrrhiza glabra) grown under salinity stress[J]. Environmental and Experimental Botany, 2019, 160: 25-34. |
[19] | 刘倩, 高娅妮, 柳旭, 等. 混合盐碱胁迫下接种丛枝菌根真菌和根瘤菌对紫花苜蓿生长的影响[J]. 生态学报, 2018, 38(17): 6143-6155. |
[19] | [Liu Qian, Gao Yani, Liu Xu, et al. Effects of inoculation with arbuscular mycorrhizal fungi and rhizobia on growth of Medicago sativa under saline-alkaline stress[J]. Acta Ecologica Sinica, 2018, 38(17): 6143-6155.] |
[20] | 邢易梅, 蕫理, 战力峰, 等. 混合接种摩西球囊霉和根瘤菌对紫花苜蓿耐碱能力的影响[J]. 草业学报, 2020, 29(9): 136-145. |
[20] | [Xing Yimei, Dong Li, Zhan Lifeng, et al. Effect of mixed inoculation of Glomus mosseae and Sinorhizobium melilotion alkali resistance of alfalfa[J]. Acta Prataculturae Sinica, 2020, 29(9): 136-145.] |
[21] | 孙晨瑜, 曾燕红, 马俊卿, 等. 丛枝菌根真菌对黄花蒿生长和根系分泌物化学组成的影响[J]. 热带作物学报, 2020, 41(9): 1831-1837. |
[21] | [Sun Chenyu, Zeng Yanhong, Ma Junqing, et al. Effects of Arbuscular Mycorrhizal Fungi on Artemisia annua L. growth and chemical composition of root exudates[J]. Chinese Journal of Tropical Crops, 2020, 41(9): 1831-1837.] |
[22] | 王晶晶, 闫海冰, 王紫瑄, 等. 断根与IBA处理对沙冬青根系质量及幼苗生长的影响[J]. 干旱区研究, 2022, 39(1): 230-239. |
[22] | [Wang Jingjing, Yan Haibing, Wang Zixuan, et al. Effects of root cutting and IBA treatment on the root quality and growth of Ammopiptanthus mongolicus seedlings[J]. Arid Zone Research, 2022, 39(1): 230-239.] |
[23] | 尉秋实, 王继和, 李昌龙, 等. 不同生境条件下蒙古沙冬青种群分布格局与特征的初步研究[J]. 植物生态学报, 2005, 56(4): 591-598. |
[23] | [Yu Qiushi, Wang Jihe, Li Changlong, et al. A preliminary study on the distribution pattern and characteristics of Ammopiptanthus mongolicus population in different desert environments[J]. Chinese Journal of Plant Ecology, 2005, 56(4): 591-598.] |
[24] | 包玉英, 孙芬, 闫伟. 内蒙古荒漠地区丛枝菌根植物的初步研究[J]. 干旱区资源与环境, 2005, 19(3): 180-184. |
[24] | [Bao Yuying, Sun Fen, Yan Wei. Preliminary study on Arbuscular Mycorrhizal tupes of common plants in Inner Mongolia Desert Region[J]. Journal of Arid Land Resources and Environment, 2005, 19(3): 180-184.] |
[25] | Phillips J M, Hayman D S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection[J]. Transactions of the British Mycological Society, 1970, 55(16): 158-161. |
[26] | Bagyaraj D J. Vesicular-arbuscular Mycorrhiza: Application in Agriculture[J]. Methods in Microbiology, 1992, 24(8): 359-373. |
[27] | Tisserant B, Gianinazzi-Pearson V, Gianinazzi S, et al. In planta histochemical staining of fungal alkaline phosphatase activity for analysis of efficient arbuscular mycorrhizal infections[J]. Mycological Research, 1993, 97(2): 245-250. |
[28] | 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000: 125-127. |
[28] | [Li Hesheng. Principles and Techniques of Plant Physiological and Biochemical Experiments[M]. Beijing: Higher Education Press, 2000: 125-127.] |
[29] | 李佳乐, 梁泳怡, 刘文杰, 等. 有机肥替代化学氮肥对橡胶幼苗生长和土壤环境的影响[J]. 应用生态学报, 2022, 33(2): 431-438. |
[29] | [Li Jiale, Liang Yongyi, Liu Wenjie, et al. Effects of manure substituting chemical nitrogen fertilizer on rubber seedling growth and soil environment[J]. Chinese Journal of Applied Ecology, 2022, 33(2): 431-438.] |
[30] | 关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986: 274-323. |
[30] | [Guan Songyin. Soil Enzyme and Its Research Method[M]. Beijing: China Agriculture Press, 1986: 274-323.] |
[31] | 桑钰, 高文礼, 再努尔·吐尔逊, 等. 干旱胁迫下AMF对多枝柽柳幼苗和疏叶骆驼刺根系生长和氮素吸收分配的影响[J]. 干旱区研究, 2021, 38(1): 247-256. |
[31] | [Sang Yu, Gao Wenli, Zainur Tursu, et al. Effects of drought stress and arbuscular-mycorrhizal fungi on root growth, nitrogen absorption, and distribution of two desert riparian plant seedlings[J]. Arid Zone Research, 2021, 38(1): 247-256.] |
[32] | 弓明钦, 王凤珍, 陈羽, 等. 西南桦对菌根的依赖性及其接种效应研究[J]. 林业科学研究, 2000, 13(1): 11-17. |
[32] | [Gong Mingqin, Wang Fengzhen, Chen Yu, et al. Mycorrhizal dependency and inoculant effects on the growth of Betula alnoides seedlings[J]. Forest Research, 2000, 13(1): 11-17.] |
[33] | 邢红爽, 孙鹏飞, 李峰, 等. 丛枝菌根真菌对薰衣草耐热性的影响[J]. 菌物学报, 2019, 38(5): 698-706. |
[33] | [Xing Hongshuang, Sun Pengfei, Li Feng, et al. Effects of Arbuscular Mycorrhizal Fungi on heat tolerance of Lavandula angustifolia[J]. Mycosystema, 2019, 38(5): 698-706.] |
[34] | 刘雅辰. 两种丛枝菌根真菌(AMF)对荆条幼苗生长的影响[D]. 郑州: 河南农业大学, 2020. |
[34] | [Liu Yachen. The Effects of Two Arbuscular Mycorrhizal Fungi on the Growth of Vitex negundo Seedlings[D]. Zhengzhou: Henan Agricultural University, 2020.] |
[35] | 刘兆娜, 郭绍霞, 李伟. AM真菌对百合生长和生理特性的影响[J]. 草业学报, 2017, 26(11): 85-93. |
[35] | [Liu Zhaona, Guo Shaoxia, Li Wei. Effect of arbuscular mycorrhizal fungi on growth and physiological characteristics of Lilium brownii[J]. Acta Prataculturae Sinica, 2017, 26(11): 85-93.] |
[36] | 谷文超, 阳文武, 张杰, 等. 混合接种丛枝菌根真菌对木香幼苗生长及化学成分的影响[J]. 中国实验方剂学杂志, 2020, 26(14): 173-181. |
[36] | [Gu Wenchao, Yang Wenwu, Zhang Jie, et al. Effect of mixed inoculation of Arbuscular Mycorrhizal on growth and chemical composition of Aucklandia lappa seedlings[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2020, 26(14): 173-181.] |
[37] | 冯远娇, 陈卓娜, 王建武, 等. 玉米丛枝菌根真菌侵染率与养分含量的变化研究[J]. 中国生态农业学报, 2010, 18(3): 486-491. |
[37] | [Feng Yuanjiao, Chen Zhuona, Wang Jianwu, et al. Change in Abuscular Mycorrhizal Fungi colonization rate and nutrient content in Bt corn[J]. Chinese Journal of Eco-Agriculture, 2010, 18(3): 486-491.] |
[38] | 王红菊, 王幼珊, 张淑彬, 等. 丛枝菌根真菌在蔬菜基质育苗上的应用研究[J]. 华北农学报, 2011, 26(2): 152-156. |
[38] | [Wang Hongju, Wang Youshan, Zhang Shubin, et al. Application of Arbuscular Mycorrhizal Fungi on vegetable seedling cultivation with different substrates[J]. Acta Agronomica Boreali-Sinica, 2011, 26(2): 152-156.] |
[39] | 杨应, 何跃军, 董鸣, 等. 丛枝菌根网络对不同喀斯特适生植物生长及氮摄取的影响[J]. 生态学报, 2017, 37(24): 8477-8485. |
[39] | [Yang Ying, He Yuejun, Dong Ming, et al. Effects of common mycorrhizal networks on nitrogen acquisition and growth traits of different plants in karst areas[J]. Acta Ecologica Sinica, 2017, 37(24): 8477-8485.] |
[40] | Wang F Y, Lin X G, Yin R, et al. Effects of arbuscular mycorrhizal inoculation on the growth of Elsholtzia splendens and Zea mays and the activities of phosphatase and urease in a multi-metal-contaminated soil under unsterilized conditions[J]. Applied Soil Ecology, 2006, 31(1-2): 110-119. |
[41] | Wu Q S, Zou Y N, He X H. Differences of hyphal and soil phosphatase activities in drought-stressed mycorrhizal trifoliate orange (Poncirus trifoliata) seedlings[J]. Scientia Horticulturae, 2011, 129(2): 294-298. |
[42] | Abdel-Fattah G M, Asrar A A, Abdel-Salam E M, et al. Influence of arbuscular mycorrhiza and phosphorus fertilization on the gas exchange, growth and phosphatase activity of soybean (Glycine max L. ) plants[J]. Photosynthetica, 2014, 52(4): 581-588. |
[43] | 竹嘉妮, 黄弘, 杜勇, 等. 丛枝菌根真菌影响宿主植物蒺藜苜蓿根系酸性磷酸酶活性的跨世代效应[J]. 生态学杂志, 2022, 41(5): 912-918. |
[43] | [Zhu Jiani, Huang Hong, Du Yong, et al. The transgenerational effect of arbuscular mycorrhizal fungi on root phosphatase activity of host plant Medicago truncatula[J]. Chinese Journal of Ecology, 2022, 41(5): 912-918.] |
[44] | 付晓峰, 张桂萍, 张小伟, 等. 溶磷细菌和丛枝菌根真菌接种对南方红豆杉生长及根际微生物和土壤酶活性的影响[J]. 西北植物学报, 2016, 36(2): 353-360. |
[44] | [Fu Xiaofeng, Zhang Guiping, Zhang Xiaowei, et al. Effects of PSB and AMF on growth, microorganisms and soil enzyme activities in the rhizosphere of Taxus chinensis var. mairei seedlings[J]. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(2): 353-360.] |
[45] | Santander Christian, Aroca Ricardo, Cartes Paula, et al. Aquaporins and cation transporters are differentially regulated by two arbuscular mycorrhizal fungi strains in lettuce cultivars growing under salinity conditions[J]. Plant Physiology and Biochemistry, 2021, 158: 396-409. |
[46] | Han Yanyan, Lou Xiao, Zhang Wenrui, et al. Arbuscular Mycorrhizal Fungi enhanced drought resistance of Populus cathayana by regulating the 14-3-3 family protein genes[J]. Microbiology Spectrum, 2022, 10(3): e0245621. |
[47] | Porcel R, Redondo-Gómez Susana, Mateos-Naranjo E, et al. Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress[J]. Journal of Plant Physiology, 2015, 185(2): 75-83. |
[48] | 王志刚, 毕银丽, 李强, 等. 接种AM真菌对采煤沉陷地复垦植物光合作用和抗逆性的影响[J]. 南方农业学报, 2017, 48(5): 800-805. |
[48] | [Wang Zhigang, Bi Yinli, Li Qiang, et al. Effects of Arbuscular Mycorrhizal Fungus on photosynthesis and stress resistance of reclamation plants in coal mining subsidence areas[J]. Journal of Southern Agriculture, 2017, 48(5): 800-805.] |
[49] | 常双双, 王承南, 王森, 等. 5种丛枝菌根真菌对君迁子幼苗光合生长的影响[J]. 经济林研究, 2016, 34(2): 79-85. |
[49] | [Chang Shuangshuang, Wang Chengnan, Wang Sen, et al. Effects of inoculating different kinds of AMF on growth of seedlings in Diospyros lotus[J]. Nonwood Forest Research, 2016, 34(2): 79-85.] |
[50] | 马颖, 郭绍霞, 李想, 等. AM真菌对彩叶草生长发育的影响[J]. 安徽农业科学, 2008, 48(11): 4500-4501. |
[50] | [Ma Ying, Guo Shaoxia, Li Xiang, et al. Effects of AM Fungi on growth and development of Coleusblumei[J]. Journal of Anhui Agricultural Science, 2008, 48(11): 4500-4501.] |
[51] | 杨昌钰, 张芮, 蔺宝军, 等. 水分胁迫对设施延迟栽培葡萄根际土壤有机氮及土壤酶活性的影响[J]. 干旱区研究, 2021, 38(5): 1376-1384. |
[51] | [Yang Changyu, Zhang Rui, Lin Baojun, et al. Effects of water stress on rhizosphere organic nitrogen fractions andenzyme activities in the rhizosphere of delayed cultivation grape[J]. Arid Zone Research, 2021, 38(5): 1376-1384.] |
[52] | 勒佳佳, 苏原, 彭庆文, 等. 氮添加对天山高寒草原土壤酶活性和酶化学计量特征的影响[J]. 干旱区研究, 2020, 37(2): 382-389. |
[52] | [Le Jiajia, Su Yuan, Peng Qingwen, et al. Effects of nitrogen addition on soil enzyme activities and ecoenzymatic stoichiometry in alpine grassland of the Tianshan Mountain[J]. Arid Zone Research, 2020, 37(2): 382-389.] |
[53] | 罗方舟, 向垒, 李慧, 等. 丛枝菌根真菌对旱稻生长, Cd吸收累积和土壤酶活性的影响[J]. 农业环境科学学报, 2015, 35(6): 6. |
[53] | [Luo Fangzhou, Xiang Lei, Li Hui, et al. Effects of Arbuscular Mycorrhizal Fungi (AMF) on growth and Cd accumulation of upland rice and soil enzyme activities in cadmium contaminated soil[J]. Journal of Agro-Environment Science, 2015, 35(6): 6.] |
[54] | 任旭琴. 丛枝菌根真菌对淮安红椒连作土壤养分和酶活的影响[J]. 湖北农业科学, 2016, 55(17): 4. |
[54] | [Ren Xuqin. Effects of Arbuscular Mycorrhizal Fungus (AMF) on soil nutrients and enzyme activities in continuous cropping greenhouse of Huai’an Red Pepper[J]. Hubei Agricultural Sciences, 2016, 55(17): 4.] |
[55] | 贾红梅, 方千, 张秫华, 等. AM真菌对丹参生长及根际土壤酶活性的影响[J]. 草业学报, 2020, 29(6): 83-92. |
[55] | [Jia Hongmei, Fang Qian, Zhang Shuhua, et al. Effects of AM fungi on growth and rhizosphere soil enzyme activities of Salvia miltiorrhiza[J]. Acta Prataculturae Sinica, 2020, 29(6): 83-92.] |
[56] | Manaut N, Sanguin H L, Ouahmane L, et al. Potentialities of ecological engineering strategy based on native arbuscular mycorrhizal community for improving afforestation programs with carob trees in degraded environments[J]. Ecological Engineering, 2015, 79: 113-119. |
[57] | 袁丽环, 闫桂琴. 丛枝菌根化翅果油树幼苗根际土壤微环境[J]. 植物生态学报, 2010, 34(6): 678-686. |
[57] | [Yuan Lihuan, Yan Guiqin. Rhizospheric soil of seedlings of Elaeagnus mollis colonized by Arbuscular Mycorrhizal Fungi Chinese[J]. Journal of Plant Ecology, 2010, 34(6): 678-686.] |
/
〈 | 〉 |