Weather and Climate

The response and mechanism of Pinus tabulaeformis tree-ring width to climate change in Maijishan Mountain, Tianshui, China

  • Daijun YAO ,
  • Kang LIU ,
  • Yuxiang HUI ,
  • Kaixin WANG
Expand
  • College of Urban and Environmental Science, Northwest University, Xi’an 710127, Shaanxi, China

Received date: 2022-06-02

  Revised date: 2022-12-12

  Online published: 2023-02-24

Abstract

In recent decades, an unusual reduction in forest radial growth and temperature sensitivity has been widely observed in the northern high latitudes. Several studies have also suggested that unstable and nonlinear relationships exist between tree growth and its climatic drivers at mid-latitudes and even globally. However, this relationship remains poorly understood, particularly in the mid-latitudes. The climate response and growth process before and after the temperature abrupt change were investigated using dendroclimatological methods and the Vaganov-Shashkin model in order to research the variations and mechanisms of response of radial growth of Pinus tabulaeformis to climate factors in Maijishan Mountain, Tianshui, during 1980-2019. The findings revealed that: (1) According to the Mann-Kendall test, temperature changed abruptly in 1997 and then increased significantly. During 1980-1997 and 1998-2019, there were three patterns of response in radial growth to climate factors revealed in the variation in correlation with climatic factors: decline (Temperature in May), increase (Temperature and precipitation in October, precipitation in July and temperature in December), and fluctuation (Precipitation in June and temperature in July). (2) The Vaganov-Shashkin model estimated chronologies are significantly correlated with the measured tree-ring chronologies before and after the abrupt change (P<0.05). According to simulation results, significant climate warming resulted in more abundant heat supply for growth in spring and autumn, thereby significantly extending the growing season and potentially causing a change in response patterns in May and October. Furthermore, summer high temperatures and water scarcity impacted growth, potentially leading to a change in response patterns in July. (3) The change in response patterns to climate factors is primarily caused by climate warming and the lengthening of the growing season. If the climate continues to warm, the response patterns are expected to change, even more, and similar behavior may exist in other areas where the species is found.

Cite this article

Daijun YAO , Kang LIU , Yuxiang HUI , Kaixin WANG . The response and mechanism of Pinus tabulaeformis tree-ring width to climate change in Maijishan Mountain, Tianshui, China[J]. Arid Zone Research, 2023 , 40(1) : 19 -29 . DOI: 10.13866/j.azr.2023.01.03

References

[1] Shishov V V, Tychkov I I, Popkova M I, et al. VS-oscilloscope: A new tool to parameterize tree radial growth based on climate conditions[J]. Dendrochronologia, 2016, 39(34): 42-50.
[2] 邵雪梅. 树轮年代学的若干进展[J]. 第四纪研究, 1997, 17(3): 265-271.
[2] [Shao Xuemei. Advancements in dendrochronology[J]. Quaternary Science, 1997, 17(3): 265-271.]
[3] 高琳琳, 勾晓华, 邓洋, 等. 树轮气候学中分异现象的研究进展[J]. 冰川冻土, 2011, 33(2): 453-460.
[3] [Gao Linlin, Gou Xiaohua, Deng Yang, et al. An overview of the divergence phenomenon in dendroclimatology[J]. Journal of Glaciology and Geocryology, 2011, 33(2): 453-460.]
[4] D’Arrigo R, Wilson R, Liepert B, et al. On the ‘Divergence problem’ in northern forests: A review of the tree-ring evidence and possible causes[J]. Glob Planet Change, 2008, 60(3-4): 289-305.
[5] 于健, 徐倩倩, 何秀, 等. 长白山东坡落叶松树轮宽度对气候响应的分离效应[J]. 中南林业科技大学学报, 2013, 33(3): 89-97.
[5] [Yu Jian, Xu Qianqian, He Xiu, et al. Response divergence of Larix olgensis tree-ring widths to climate variation in eastern slope of Changbai Mountain, Northeast China[J]. Journal of Central South University of Forestry & Technology, 2013, 33(3): 89-97.]
[6] 高娜, 李书恒, 白红英, 等. 秦岭牛背梁自然保护区巴山冷杉(Abies fargesii)树轮宽度对气候变化响应的分离效应[J]. 生态学杂志, 2016, 35(8): 2056-2065.
[6] [Gao Na, Li Shuheng, Bai Hongying, et al. Response divergence of Abies fargesii tree-ring widths to climate variation in the Niubeiliang Nature Reserve of the Qinling Mountains[J]. Chinese Journal of Ecology, 2016, 35(8): 2056-2065.]
[7] 李宗善, 刘国华, 傅伯杰, 等. 川西卧龙国家级自然保护区树木生长对气候响应的时间稳定性评估[J]. 植物生态学报, 2010, 34(9): 1045-1057.
[7] [Li Zongshan, Liu Guohua, Fu Bojie, et al. Evaluation of temporal stability in tree growth-climate response in Wolong National Natural Reserve, western Sichuan, China[J]. Chinese Journal of Plant Ecology, 2010, 34(9): 1045-1057.]
[8] Shi C M, Valerie M-D, Valerie D, et al. An unstable tree-growth response to climate in two 500 year chronologies, North Eastern Qinghai-Tibetan Plateau[J]. Dendrochronologia, 2010, 28(4): 225-237.
[9] Babst F, Bouriaud O, Poulter B, et al. Twentieth century redistribution in climatic drivers of global tree growth[J]. Science Advances, 2019, 5(1): eaat4313.
[10] 陈兰, 李书恒, 侯丽, 等. 基于Vaganov-Shashkin模型的太白红杉径向生长对气候要素的响应[J]. 应用生态学报, 2017, 28(8): 2470-2480.
[10] [Chen Lan, Li Shuheng, Hou Li, et al. Response of Larix chinensis radial growth to climatic factors based on the Vaganov-Shashkin model[J]. Chinese Journal of Applied Ecology, 2017, 28(8): 2470-2480.]
[11] 包光, 刘治野, 刘娜, 等. 呼伦贝尔沙地樟子松径向生长特征的VS模型模拟分析[J]. 应用生态学报, 2021, 32(10): 3448-3458.
[11] [Bao Guang, Liu Zhiye, Liu Na, et al. Simulation analysis of the radial growth characteristics of Pinus sylvestris var. mongolica in Hulunbuir sandy land by Vaganov-Shashkin Model[J]. Chinese Journal of Applied Ecology, 2021, 32(10): 3448-3458.]
[12] Chen L, Huang J-G, Stadt K J, et al. Drought explains variation in the radial growth of white spruce in western Canada[J]. Agricultural and Forest Meteorology, 2017, 233(54): 133-142.
[13] Song H M, Liu Y, Li Q, et al. Tree-ring based may-july temperature reconstruction since AD 1630 on the Western Loess Plateau, China[J]. PloS one, 2014, 9(4): e93504.
[14] 宁应之, 王娟, 刘娜, 等. 甘肃天水麦积山风景名胜区土壤纤毛虫的物种多样性[J]. 动物学研究, 2007, 28(4): 367-373.
[14] [Ning Yingzhi, Wang Juan, Liu Na, et al. Species diversity of soil ciliates in scenic spots and historic sites of Maijishan, Tianshui, Gansu[J]. Zoological Research, 2007, 28(4): 367-373.]
[15] 郭继荣. 甘肃天水麦积山风景区野生药用植物资源调查研究[J]. 林业科技通讯, 2019, 553(1): 68-69.
[15] [Guo Jirong. Research on resources of wild medicinal plants in Maiji Mountain Scenic Spot of Tianshui, Gansu[J]. Forest Science and Technology, 2019, 553(1): 68-69.]
[16] 甘肃省地方史志编篡委员, 甘肃省志自然地理志编篡委员会. 甘肃省自然地理志[M]. 兰州: 甘肃文化出版社, 2018: 528-529.
[16] [Compilation Committee of Gansu Provincial History Local Chronicles, Gansu Provincial Local Chronicles, Physical Geography Local Chronicles Compilation Committee. Gansu Province local Chronicles:Physical Geography[M]. Lanzhou: Gansu Culture Publishing House, 2018: 528-529.]
[17] 秦进. 基于树木年轮的秦岭林线典型树种对气候的响应与区域气温重建[D]. 西安: 西北大学, 2018.
[17] [Qin Jin. The Tree-ring Based Study on Response of Typical Timberline Tree Species in The Qinling Mountains to Climate and Regional Temperature Reconstruction[D]. Xi’an: Northwest University, 2018.]
[18] 齐贵增, 白红英, 孟清, 等. 1959—2018年秦岭南北春季气候时空变化特征[J]. 干旱区研究, 2019, 36(5): 1079-1091.
[18] [Qi Guizeng, Bai Hongying, Meng Qing, et al. Climate change in the Qinling Mountains in Spring during 1959-2018[J]. Arid Zone Research, 2019, 36(5): 1079-1091.]
[19] 杨凤梅, 王乃昂, 王式功, 等. 近60 a来西秦岭及周边地区降水的分布格局[J]. 干旱区地理, 2015, 38(5): 867-879.
[19] [Yang Fengmei, Wang Nai’ang, Wang Shigong, et al. Spatial and temporal patterns of precipitation in the west Qinling over the past 60 years[J]. Arid Land Geography, 2015, 38(5): 867-879.]
[20] 李双双, 延军平, 万佳. 全球气候变化下秦岭南北气温变化特征[J]. 地理科学, 2012, 32(7): 853-858.
[20] [Li Shuangshuang, Yan Junping, Wan Jia. The characteristics of temperature change in Qinling Mountains[J]. Scientia Geographica Sinica, 2012, 32(7): 853-858.]
[21] Tychkov I I, Sviderskaya I V, Babushkina E A, et al. How can the parameterization of a process-based model help us understand real tree-ring growth?[J]. Trees, 2019, 33(2): 345-357.
[22] 宋维峰. 林木根系与均质土间相互物理作用机理研究[D]. 北京: 北京林业大学, 2006.
[22] [Song Weifeng. Study on Physical Mechanism of Interface Between Root System and Loess Soils[D]. Beijing: Beijing Forestry University, 2006.]
[23] 吴芹. 土壤水分对3个造林树种光合生理生化特性的影响[D]. 泰安: 山东农业大学, 2013.
[23] [Wu Qin. Effect of Sail Moisture an Photosynthetic Physiological and Biochemical Characteristics of Three Afforestation Tree Species[D]. Tai’an: Shandong Agricultural University, 2013.]
[24] 刘小林, 郑子龙, 蔺岩雄, 等. 甘肃小陇山林区主要林分类型土壤水分物理性质研究[J]. 西北林学院学报, 2013, 28(1): 7-11.
[24] [Liu Xiaolin, Zheng Zilong, Lin Yanxiong, et al. Physical characteristics of the soil moisture in the main forest tpes in Xiaolong Mountain[J]. Journal of Northwest Forestry University, 2013, 28(1): 7-11.]
[25] 刘卫民, 蒲金涌, 姚晓红, 等. 天水旱作区土壤水分变化规律及其与冬小麦产量关系研究[J]. 干旱地区农业研究, 2008, 26(3): 29-32.
[25] [Liu Weimin, Pu Jinyong, Yao Xiaohong, et al. A studying on variation law of soil moisture and relationship between soil moisture and output of wheat at Tianshui, Gansu in Arid Region[J]. Agricultural Research in the Arid Areas, 2008, 26(3): 29-32.]
[26] Chen F, Yuan Y J. May-June maximum temperature reconstruction from mean earlywood density in north central China and its linkages to the summer monsoon activities[J]. PLoS ONE, 2017, 9(9): e107501.
[27] Wu M L, Liu N, Bao G, et al. Climatic factors of radial growth of Pinus tabulaeformis in eastern Gansu, Northwest China based on Vaganov-Shashkin model[J]. Geografiska Annaler: Series A, Physical Geography, 2020, 102(3): 196-208.
[28] 杨东, 杨秀琴. 甘肃武都五凤山林区油松人工林的生物量和生产力研究[J]. 西北师范大学学报(自然科学版), 2004, 40(1): 70-75.
[28] [Yang Dong, Yang Xiuqin. Studies on biomass and productivity of Pinus tabulaeforrnis planation in the Wufengshan of Wudu, Gansu Province[J]. Journal of Northwest Normal University (Natural Science), 2004, 40(1): 70-75.]
[29] 史江峰, 刘禹, Vaganov E, 等. 贺兰山油松生长的气候响应机制初步探讨[J]. 第四纪研究, 2005, 25(2): 245-251.
[29] [Shi Jiangfeng, Liu Yu, Vaganov E, et al. A primary discussion on the climatic response of Pinus tabulaefomis in the Helan Mountain[J]. Quaternary Science, 2005, 25(2): 245-251.]
[30] 史江峰, 刘禹, 蔡秋芳, 等. 油松(Pinus tabulaeformis)树轮宽度与气候因子统计相关的生理机制——以贺兰山地区为例[J]. 生态学报, 2006, 26(3): 697-705.
[30] [Shi Jiangfeng, Liu Yu, Cai Qiufang, et al. A case study of physiological characteristics of statistical correlation between Pinus tabulaeformis tree-ring widths and climatic factors[J]. Acta Ecologica Sinica, 2006, 26(3): 697-705.]
[31] 杨琪, 李书恒, 李家豪, 等. 秦岭森林植被物候及其对气象因子的响应[J]. 干旱区研究, 2021, 38(4): 1065-1074.
[31] [Yang Qi, Li Shuheng, Li Jiahao, et al. Phenology of forest vegetation and its response to climate change in the Qinling Mountains[J]. Arid Zone Research, 2021, 38(4): 1065-1074.]
Outlines

/