Plant Ecology

Responses of seedling growth and biomass allocation of Malus sieversii to precipitation amount and precipitation interval

  • Zongfang ZHANG ,
  • Jiang XU ,
  • Xiaojun SHI
Expand
  • College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China

Received date: 2022-05-21

  Revised date: 2022-07-12

  Online published: 2023-02-24

Abstract

This study aimed to reveal the effects of different precipitation amount and precipitation interval on the growth of Malus sieversii seedlings. A two-factor control experiment was set up based on the average annual precipitation amount and precipitation interval in the experimental site. The three variations of precipitation amount were as follows: W (precipitation amount), W- (15% decrease of precipitation amount), and W+ (15% increase of precipitation amount). The two precipitation intervals were as follows: T (precipitation interval of 4 days) and T+ (precipitation interval of 8 days). Results showed that (1) under the same precipitation interval treatment, seedling basal diameter, leaf number, and above-and under-ground biomass increased with the increase in precipitation amount; (2) under the same precipitation amount treatment, T+ treatment can promote the elongation of the main roots and increase the root/shoot ratio; and (3) compared with W treatment, the relative growth rates of above-ground, under-ground, and total biomass under W+ treatment increased by 55.42%, 20.75%, and 34.43%, respectively. Prolonging the interval of precipitation will promote root growth and under-ground biomass accumulation of M. sieversii seedlings. Within a certain range of precipitation, the increase in precipitation amount can promote the growth and biomass accumulation of M. sieversii.

Cite this article

Zongfang ZHANG , Jiang XU , Xiaojun SHI . Responses of seedling growth and biomass allocation of Malus sieversii to precipitation amount and precipitation interval[J]. Arid Zone Research, 2023 , 40(1) : 102 -110 . DOI: 10.13866/j.azr.2023.01.11

References

[1] 李克南, 杨晓光, 刘志娟, 等. 全球气候变化对中国种植制度可能影响分析Ⅲ. 中国北方地区气候资源变化特征及其对种植制度界限的可能影响[J]. 中国农业科学, 2010, 43(10): 2088-2097.
[1] [Li Kenan, Yang Xiaoguang, Liu Zhijuan, et al. Analysis of the potential influence of global climate change on cropping systems in China Ⅲ. The change characteristics of climatic resources in northern China and its potential influence on cropping systems[J]. Scientia Agricultura Sinica, 2010, 43(10): 2088-2097.]
[2] Trenberth K E. Changes in precipitation with climate change[J]. Climate Research, 2011, 47(1): 123-138.
[3] Schneider A C, Lee T D, Kreiser M A, et al. Comparative and interactive effects of reduced precipitation frequency and volume on the growth and function of two perennial grassland species[J]. International Journal of Plant Sciences, 2014, 175(6): 702-712.
[4] Wilcox K R, Von Fischer J C, Muscha J M, et al. Contrasting above-and belowground sensitivity of three Great Plains grasslands to altered rainfall regimes[J]. Global Change Biology, 2015, 21(1): 335-344.
[5] Wu D, Ciais P, Viovy N, et al. Asymmetric responses of primary productivity to altered precipitation simulated by ecosystem models across three long-term grassland sites[J]. Biogeosciences, 2018, 15(11): 3421-3437.
[6] Hoeppner S S, Dukes J S. Interactive responses of old-field plant growth and composition to warming and precipitation[J]. Global Change Biology, 2012, 18(5): 1754-1768.
[7] Garbulsky M F, Pe?uelas J, Papale D, et al. Patterns and controls of the variability of radiation use efficiency and primary productivity across terrestrial ecosystems[J]. Global Ecology and Biogeography, 2010, 19(2): 253-267.
[8] Heisler J L, Weltzin J F. Variability matters: Towards a perspective on the influence of precipitation on terrestrial ecosystems[J]. New Phytologist, 2006, 172(2): 189-192.
[9] Knapp A K, Beier C, Briske D D, et al. Consequences of more extreme precipitation regimes for terrestrial ecosystems[J]. BioScience, 2008, 58(9): 811-821.
[10] Nathan R, Muller-Landau H C. Spatial patterns of seed dispersal, their determinants and consequences for recruitment[J]. Trends in Ecology & Evolution, 2000, 15(7): 278-285.
[11] Clark C J, Poulsen J R, Levey D J, et al. Are plant populations seed limited? A critique and meta-analysis of seed addition experiments[J]. The American Naturalist, 2007, 170(1): 128-142.
[12] Münzbergová Z, Herben T. Seed, dispersal, microsite, habitat and recruitment limitation: Identification of terms and concepts in studies of limitations[J]. Oecologia, 2005, 145(1): 1-8.
[13] 武静莲, 王淼, 蔺菲, 等. 降水变化和种间竞争对红松和蒙古栎幼苗生长的影响[J]. 应用生态学报, 2009, 20(2): 235-240.
[13] [Wu Jinglian, Wang Miao, Lin Fei, et al. Effects of precipitation and interspecific competition on Quercus mongolica and Pinus koraiensis seedlings growth[J]. Chinese Journal of Applied Ecology, 2009, 20(2): 235-240.]
[14] 段桂芳, 单立山, 李毅, 等. 降水格局变化对红砂幼苗生长的影响[J]. 生态学报, 2016, 36(20): 6457-6464.
[14] [Duan Guifang, Shan Lishan, Li Yi, et al. Effects of changing precipitation patterns on seedling growth of Reaumuria soongorica[J]. Acta Ecologica Sinica, 2016, 36(20): 6457-6464.]
[15] Gao R, Yang X, Liu G, et al. Effects of rainfall pattern on the growth and fecundity of a dominant dune annual in a semi-arid ecosystem[J]. Plant and Soil, 2015, 389(1): 335-347.
[16] 单立山, 李毅, 张荣, 等. 降雨格局变化对白刺幼苗根系形态特征的影响[J]. 生态学报, 2017, 37(21): 7324-7332.
[16] [Shan Lishan, Li Yi, Zhang Rong, et al. Response of the root morphology of Nitraria tangutorum seedlings to precipitation pattern changes[J]. Acta Ecologica Sinica, 2017, 37(21): 7324-7332.]
[17] 董丽佳, 桑卫国. 模拟增温和降水变化对北京东灵山辽东栎种子出苗和幼苗生长的影响[J]. 植物生态学报, 2012, 36(8): 819-830.
[17] [Dong Lijia, Sang Weiguo. Effects of simulated warming and precipitation change on seedling emergence and growth of Quercus mongolica in Dongling Mountain, Beijing, China[J]. Chinese Journal of Plant Ecology, 2012, 36(8): 819-830.]
[18] 周双喜, 吴冬秀, 张琳, 等. 降雨格局变化对内蒙古典型草原优势种大针茅幼苗的影响[J]. 植物生态学报, 2010, 34(10): 1155-1164.
[18] [Zhou Shuangxi, Wu Dongxiu, Zhang Lin, et al. Effects of changing precipitation patterns on seedlings of Stipa grandis, a dominant plant of typical grassland of Inner Mongolia, China[J]. Chinese Journal of Plant Ecology, 2010, 34(10): 1155-1164.]
[19] 段桂芳, 单立山, 李毅, 等. 红砂幼苗根系形态特征对降水格局变化的响应[J]. 草业学报, 2016, 25(10): 95-103.
[19] [Duan Guifang, Shan Lishan, Li Yi, et al. Response of root morphology to precipitation change in Reaumuria soongorica seedlings[J]. Acta Prataculturae Sinica, 2016, 25(10): 95-103.]
[20] Xie Y, Li Y, Xie T, et al. Impact of artificially simulated precipitation patterns change on the growth and morphology of Reaumuria soongarica seedlings in Hexi Corridor of China[J]. Sustainability, 2020, 12(6): 2439.
[21] 王俊, 王卓晗, 杨龙, 等. 浇水频率和凋落物覆盖量对黧蒴锥种子萌发及幼苗存活的影响[J]. 应用生态学报, 2008, 19(10): 2097-2102.
[21] [Wang Jun, Wang Zhuohan, Yang Long, et al. Effects of litter coverage and watering frequency on seed germination and seedling survival of Castanopsis fissa[J]. Chinese Journal of Applied Ecology, 2008, 19(10): 2097-2102.]
[22] 单立山, 李毅, 段桂芳, 等. 模拟降雨变化对两种荒漠植物幼苗生长及生物量分配的影响[J]. 干旱区地理, 2016, 39(6): 1267-1274.
[22] [Shan Lishan, Li Yi, Duan Guifang, et al. Effects of simulated precipitation on seedling growth and biomass allocation in two tree species in the arid lands of Northwest China[J]. Arid Land Geography, 2016, 39(6): 1267-1274.]
[23] 邵佳怡, 杜建会, 李升发, 等. 高山林线生态交错区木本植物幼苗分布特征、更新机制及其对气候变化的响应[J]. 应用生态学报, 2019, 30(8): 2854-2864.
[23] [Shao Jiayi, Du Jianhui, Li Shengfa, et al. Tree seedling distribution, regeneration mechanism and response to climate change in alpine treeline ecotone[J]. Chinese Journal of Applied Ecology, 2019, 30(8): 2854-2864.]
[24] Wu H, Wei X, Jiang M. Intraspecific variation in seedling growth responses of a relict tree species Euptelea pleiospermum to precipitation manipulation along an elevation gradient[J]. Plant Ecology, 2021, 222(12): 1297-1312.
[25] Chun X, Ming D, Guang Z, et al. Response of Salix psammophila seedlings to simulated precipitation change in Ordas plateau[J]. Acta Ecologica Sinica, 2001, 21(1): 171-176.
[26] 徐娇媚, 徐文修, 张富纬, 等. 近50 a伊犁河谷≥0 ℃和≥10 ℃期间降水量的时空变化特征分析[J]. 新疆农业科学, 2013, 50(10): 1806-1813.
[26] [Xu Jiaomei, Xu Wenxiu, Zhang Fuwei, et al. The analysis temporal and spatial variation characteristics about the period precipitation of ≥0 ℃ and ≥l0 ℃ in Ili River Basin in recent 50 years[J]. Xinjiang Agricultural Sciences, 2013, 50(10): 1806-1813.]
[27] 闫俊杰, 闫敏, 崔东, 等. 近55 a新疆伊犁河谷气温和降水变化趋势分析[J]. 水电能源科学, 2017, 35(10): 13-16, 12.
[27] [Yan Junjie, Yan Min, Cui Dong, et al. Trend analysis of temperature and precipitation in Yilihe basin near the last 55 years[J]. Water Resources and Power, 2017, 35(10): 13-16, 12.]
[28] 杨霞, 安大维, 周鸿奎, 等. 2012—2017年伊犁河谷冬季降水日变化特征[J]. 冰川冻土, 2020, 42(2): 609-619.
[28] [Yang Xia, An Dawei, Zhou Hongkui, et al. Daily variation of winter precipitation in Ili River valley of Xinjiang from 2012 to 2017[J]. Journal of Glaciology and Geocryology, 2020, 42(2): 609-619.]
[29] 张宏祥, 郑田勇. 海拔对新疆野苹果种群遗传特征的影响[J]. 生态学杂志, 2020, 39(12): 4031-4037.
[29] [Zhang Hongxiang, Zheng Tianyong. Effects of elevation on population genetic characteristics of Malus sieversii[J]. Chinese Journal of Ecology, 2020, 39(12): 4031-4037.]
[30] Aldwinckle H S, Forsline P L, Gustafson H L, et al. Evaluation of apple scab resistance of Malus sieversii populations from Central Asia[J]. HortScience, 1997, 32(3): 440.
[31] 陈学森, 毛志泉, 王楠, 等. 新疆落叶果树种质资源评价挖掘与创新利用[J]. 植物遗传资源学报, 2021, 22(6): 1483-1490.
[31] [Chen Xuesen, Mao Zhiquan, Wang Nan, et al. Progress on evaluation,mining and utilization of germplasm resource of deciduous fruit trees in Xinjiang[J]. Journal of Plant Genetic Resources, 2021, 22(6): 1483-1490.]
[32] 谭冬梅. 干旱胁迫对新疆野苹果及平邑甜茶生理生化特性的影响[J]. 中国农业科学, 2007, 40(5): 980-986.
[32] [Tan Dongmei. The physiology and biochemistry of programmed Malus siversii and M. hupehensis cell death under drought stress[J]. Scientia Agricultura Sinica, 2007, 40(5): 980-986.]
[33] 张静, 赵亮明, 邹志荣. 不同苹果砧木组培苗抗旱性的比较研究[J]. 果树学报, 2013, 30(1): 88-93.
[33] [Zhang Jing, Zhao Liangming, Zou Zhirong. Drought resistance of different apple rootstocks in vitro[J]. Journal of Fruit Science, 2013, 30(1): 88-93.]
[34] 郑点, 吴玉霞, 覃伟铭, 等. 新疆野苹果作为苹果砧木利用的研究进展[J]. 中国野生植物资源, 2019, 38(2): 56-59.
[34] [Zheng Dian, Wu Yuxia, Qin Weiming, et al. Advance in research on application of Malus sieversii as rootstock[J]. Chinese Wild Plant Resources, 2019, 38(2): 56-59.]
[35] 阎国荣, 许正. 天山野生果树主要病害及其分布[J]. 干旱区研究, 2001, 18(2): 47-49.
[35] [Yan Guorong, Xu Zheng. Study on the wild fruit tree diseases of Tianshan Mountains and their distribution in Xinjiang[J]. Arid Zone Research, 2001, 18(2): 47-49.]
[36] Volk G M, Richards C M, Reilley A A, et al. Ex situ conservation of vegetatively propagated species: Development of a seed-based core collection for Malus sieversii[J]. Journal of the American Society for Horticultural Science, 2005, 130(2): 203-210.
[37] Allison I, Bindoff N L, Bindschadler R A, et al. The Copenhagen Diagnosis: Updating the World on the Latest Climate Science[M]. UK: Elsevier, 2009: 49-51.
[38] Heisler-White J L, Blair J M, Kelly E F, et al. Contingent productivity responses to more extreme rainfall regimes across a grassland biome[J]. Global Change Biology, 2009, 15(12): 2894-2904.
[39] 刘忠权, 董合干. 新疆野苹果林野苹果实生苗空间分布及其生存现状——以新源县为例[J]. 新疆农业科技, 2018, 40(5): 37-41.
[39] [Liu Zhongquan, Dong Hegan. Spatial distribution and survival status of Malus sieversii seedlings in wild apple forest: A case study in Xinyuan County, China[J]. Xinjiang Agricultural Science and Technology, 2018, 40(5): 37-41.]
[40] 陶冶, 张元明, 周晓兵. 伊犁野果林浅层土壤养分生态化学计量特征及其影响因素[J]. 应用生态学报, 2016, 27(7): 2239-2248.
[40] [Tao Ye, Zhang Yuanming, Zhou Xiaobing. Ecological stoichiometry of surface soil nutrient and its influencing factors in the wild fruit forest in Yili region, Xinjiang, China[J]. Chinese Journal of Applied Ecology, 2016, 27(7): 2239-2248.]
[41] 陈燕君. 新疆新源县野苹果林资源保护与恢复[J]. 北京农业, 2015, 35(27): 98-99.
[41] [Chen Yanjun. Protection and restoration of wild apple forests in Xinyuan County, Xinjiang[J]. Beijing Agriculture, 2015, 35(27): 98-99.]
[42] 闫秀娜, 李芳, 阎国荣, 等. 濒危植物新疆野苹果种子的萌发特性[J]. 天津农学院学报, 2015, 22(2): 33-36.
[42] [Yan Xiuna, Li Fang, Yan Guorong, et al. Preliminary exploration on seed germination in endangered plant Malus sieversii[J]. Journal of Tianjin Agricultural University, 2015, 22(2): 33-36.]
[43] 何莹莹, 于明含, 丁国栋, 等. 油蒿(Artemisia ordosica)幼苗生长及生物量分配对降雨量和降雨间隔的响应[J]. 中国沙漠, 2021, 41(5): 183-191.
[43] [He Yingying, Yu Minghan, Ding Guodong, et al. Responses of seedling growth and biomass allocation of Artemisia ordosica to precipitation and precipitation interval[J]. Journal of Desert Research, 2021, 41(5): 183-191.]
[44] Shan L, Zhao W, Li Y, et al. Precipitation amount and frequency affect seedling emergence and growth of Reaumuria soongarica in northwestern China[J]. Journal of Arid Land, 2018, 10(4): 574-587.
[45] Didiano T J, Johnson M T, Duval T P. Disentangling the effects of precipitation amount and frequency on the performance of 14 grassland species[J]. PLoS One, 2016, 11(9): e0162310.
[46] Slette I J, Blair J M, Fay P A, et al. Effects of compounded precipitation pattern intensification and drought occur belowground in a mesic grassland[J]. Ecosystems, 2022, 25: 1265-1278.
[47] Fay P A, Carlisle J D, Knapp A K, et al. Productivity responses to altered rainfall patterns in a C4-dominated grassland[J]. Oecologia, 2003, 137(2): 245-251.
[48] Chaves M M, Maroco J P, Pereira J S. Understanding plant responses to drought-from genes to the whole plant[J]. Functional Plant Biology, 2003, 30(3): 239-264.
[49] 肖春旺, 张新时. 模拟降水量变化对毛乌素油蒿幼苗生理生态过程的影响研究[J]. 林业科学, 2001, 37(1): 15-22.
[49] [Xiao Chunwang, Zhang Xinshi. Study on the effect of simulated pregipitation change on the physiological ecology process for Artemisia ordosica seedlings in Maowusu Sandland[J]. Scientia Silvae Sinicae, 2001, 37(1): 15-22.]
[50] 肖春旺, 董鸣, 周广胜, 等. 鄂尔多斯高原沙柳幼苗对模拟降水量变化的响应[J]. 生态学报, 2001, 21(1): 171-176.
[50] [Xiao Chunwang, Dong Ming, Zhou Guangsheng, et al. Response of Salix psammophila seedlings to simulated precipitation change in Ordas plateau[J]. Acta Ecologica Sinica, 2001, 21(1): 171-176.]
[51] Li Z, Zhang Y, Yu D, et al. The influence of precipitation regimes and elevated CO2 on photosynthesis and biomass accumulation and partitioning in seedlings of the rhizomatous perennial grass Leymus Chinensis[J]. PloS One, 2014, 9(8): e103633.
[52] 吴茜, 丁佳, 闫慧, 等. 模拟降水变化和土壤施氮对浙江古田山5个树种幼苗生长和生物量的影响[J]. 植物生态学报, 2011, 35(3): 256-267.
[52] [Wu Qian, Ding Jia, Yan Hui, et al. Effects of simulated precipitation and nitrogen addition on seedling growth and biomass in five tree species in Gutian Mountain, Zhejiang Province, China[J]. Chinese Journal of Plant Ecology, 2011, 35(3): 256-267.]
[53] McCarthy M C, Enquist B J. Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation[J]. Functional Ecology, 2007, 21(4): 713-720.
[54] 杨彪生, 单立山, 马静, 等. 红砂幼苗生长及根系形态特征对干旱-复水的响应[J]. 干旱区研究, 2021, 38(2): 469-478.
[54] [Yang Biaosheng, Shan Lishan, Ma Jing, et al. Response of growth and root morphological characteristics of Reaumuria soongorica seedlings to drought-rehydration[J]. Arid Zone Research, 2021, 38(2): 469-478.]
Outlines

/