Land and Water Resources

An evaluation of water environmental carrying capacity in Kyrgyzstan based on sustainable development goals

Expand
  • 1. College of Resources & Environment Sciences, Xinjiang University, Urumqi 830046, Xinjiang, China
    2. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
    3. Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China

Received date: 2020-04-27

  Revised date: 2020-06-04

  Online published: 2023-01-17

Abstract

Kyrgyzstan is an important transportation hub for the countries along The Belt and Road Initiative in China, which is rich in mineral resources, has an underdeveloped economy, has frequent human activities, and has relatively weak ecological environmental protection, resulting in major water environmental problems. Drawing on the evaluation indicators of the 2030 Sustainable Development Goals, this study uses the entropy and the analytic hierarchy methods to determine the weights of the indicators, analyzes the change trend of the carrying capacity of the water environment in Kyrgyzstan from 2006 to 2020 using the principal component analysis method, and determines the main influencing factors affecting the carrying capacity of the water environment in Kyrgyzstan using the vector model method. The results show that the carrying capacity of the water environment in Kyrgyzstan from 2006 to 2020 shows an overall enhancement trend. The water environment and socio-economic subsystems promote the continuous increase in the carrying capacity of the water environment, while the water ecology and water resource subsystems limit the carrying capacity of the water environment. Population density, water shortage, water body area, and per capita share of renewable water resources are the main influencing factors limiting the water environment’s carrying capacity. Increasing the rate of urbanization, improving the efficiency of water use, reducing the discharge of wastewater, and increasing the rate of wastewater treatment are effective ways to improve the water environment’s carrying capacity in Kyrgyzstan.

Cite this article

WANG Weilu,LIU Tie,LUO Geping . An evaluation of water environmental carrying capacity in Kyrgyzstan based on sustainable development goals[J]. Arid Zone Research, 2022 , 39(6) : 1801 -1809 . DOI: 10.13866/j.azr.2022.06.10

References

[1] Li Yizhen, Ma Long, Li Yaoming, et al. Exploration of the driving factors and distribution of fecal coliform in rivers under a traditional agro-pastoral economy in Kyrgyzstan, Central Asia[J]. Chemosphere, 2022, 286(2): 131700-131708.
[2] 李清龙, 王路光, 张焕祯, 等. 水环境承载力理论研究与展望[J]. 地理与地理信息科学, 2004, 20(1): 87-89.
[2] [ Li Qinglong, Wang Luguang, Zhang Huanzhen, et al. Research and prospect on theoretical framework of water environmental bearing capacity[J]. Geography and Geo-Information Science, 2004, 20(1): 87-89. ]
[3] Song Weiwei, Pang Yong. Research on narrow and generalized water environment carrying capacity, economic benefit of Lake Okeechobee, USA[J]. Ecological Engineering, 2021, 173: 106420-106432.
[4] 汪嘉杨, 翟庆伟, 郭倩, 等. 太湖流域水环境承载力评价研究[J]. 中国环境科学, 2017, 37(5): 1979-1987.
[4] [ Wang Jiayang, Zhai Qingwei, Guo Qian, et al. Study on water environmental carrying capacity evaluation in Taihu Lake Basin[J]. China Environmental Science, 2017, 37(5): 1979-1987. ]
[5] Lu Yan, Xu Hongwen, Wang Yuexiang, et al. Evaluation of water environmental carrying capacity of city in Huaihe River Basin based on the AHP method: A case in Huai’an City[J]. Water Resources and Industry, 2017, 18: 71-77.
[6] 朱磊, 陈迎. “一带一路”倡议对接2030年可持续发展议程——内涵、目标与路径[J]. 世界经济与政治, 2019(4): 79-100.
[6] [ Zhu Lei, Chen Ying. Integrating Belt and Road initiative with UN 2030 sustainable development a genda: Connotations and routes[J]. World Economics and Politics, 2019(4): 79-100. ]
[7] Rodrigo G G C, Walter L F, Osvaldo L G Q, et al. A literature-based review on potentials and constraints in the implementation of the sustainable development goals[J]. Journal of Cleaner Production, 2018, 198(10): 1276-1288.
[8] 陈文婷, 郑明霞, 夏青, 等. 基于产业细化和多要素约束的白洋淀流域水环境承载力系统动力学模拟与调控[J]. 长江流域资源与环境, 2022, 31(2): 345-357.
[8] [ Chen Wenting, Zheng Mingxia, Xia Qing, et al. System dynamics simulation and control strategy of water environment carrying capacity in Baiyangdian Basin based on industry refinement and multifactor constraint[J]. Resources and Environment in the Yangtze Basin, 2022, 31(2): 345-357. ]
[9] Chen Yaning, Li Zhi, Fang Gonghuan, et al. Large hydrological processes changes in the Transboundary Rivers of Central Asia[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(10): 5059-5069.
[10] 程清平, 钟方雷, 左小安, 等. 美丽中国与联合国可持续发展目标( SDGs) 结合的黑河流域水资源承载力评价[J]. 中国沙漠, 2020, 40(1): 204-214.
[10] [ Cheng Qingping, Zhong Fanglei, Zuo Xiao’an, et al. Evaluation of water resources carrying capacity of Heihe River Basin combining beautiful China with SDGs[J]. Journal of Desert Research, 2020, 40(1): 204-214. ]
[11] Ravn B E, K?rn?v L, Lyhne I, et al. Integrating SDGs in environmental assessment: Unfolding SDG functions in emerging practices[J]. Environmental Impact Assessment Review, 2021, 90: 106632-106641.
[12] Zou Zhihong, Yun Yi, Sun Jingnan. Entropy method for determination of weight of evaluating indicators in fuzzy synthetic evaluation for water quality assessment[J]. Journal of Environmental Sciences, 2006, 18(5): 1020-1023.
[13] Wang Y M, Zhou X D, Engel B, et al. Water environment carrying capacity in Bosten Lake basin[J]. Journal of Cleaner Production, 2018, 199: 574-583.
[14] 余金龙, 尹亮, 鲍广强, 等. 基于BP神经网络的腾格里湖水环境承载力研究[J]. 中国农村水利水电, 2017(11): 83-86.
[14] [ Yu Jinlong, Yin Liang, Bao Guangqiang, et al. Research on water environmental carrying capacity of Tenggeli Lake based on BP neural networks[J]. China Rural Water and Hydropower, 2017(11): 83-86. ]
[15] 曹若馨, 张可欣, 曾维华, 等. 基于BP神经网络的水环境承载力预警研究——以北运河为例[J]. 环境科学学报, 2021, 41(5): 147-149.
[15] [ Cao Ruoxing, Zhang Kexin, Zeng Weihua, et al. Research on the early-warning method of water environment carrying capacitybased on BP neural network: A case study of Beiyunhe River Basin[J]. Acta Scientiae Circumstantiae, 2021, 41(5): 147-149. ]
[16] 南楠. 基于灰色关联理论与SD模型的江苏省水环境承载力研究[D]. 南京: 南京大学, 2012.
[16] [ Nan Nan. Study on Water Environmental Carrying Capacity of Jiangsu Province Based on Grey Correlation Theory and SD Model[D]. Nanjing: Nanjing university, 2012. ]
[17] 查木哈, 吴琴, 马成功, 等. 基于DPSIR模型评价内蒙古水环境承载力[J]. 内蒙古农业大学学报, 2020, 41(6): 65-73.
[17] [ Cha Muha, Wu Qing, Ma Chenggong, et al. Evaluation of water environmental carrying capacity based on dpsir model in Inner Mongolia[J]. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2020, 41(6): 65-73. ]
[18] Wang Xiaoyan, Liu Lei, Zhang Silong. Integrated model framework for the evaluation and prediction of the water environmental carrying capacity in the Guangdong-Hong Kong-Macao Greater Bay Area[J]. Ecological Indicators, 2021, 130: 108083-108093.
[19] 赵东, 严家家, 陈林林, 等. 基于物元可拓模型的邳城灌区水环境承载力评价[J]. 水利技术监督, 2021(8): 153-156.
[19] [ Zhao Dong, Yan Jiajia, Chen Linlin, et al. Evaluation of water environmental carrying capacity in API City irrigation District based on matter-element extension model[J]. Technical Supervision in Water Resources, 2021(8): 153-156. ]
[20] Liu Y, Wang P, Boris G, et al. A review of water pollution arising from agriculture and mining activities in Central Asia: Facts, causes and effects[J]. Environmental Pollution, 2021, 291: 118209-118219.
[21] Trnqvist R, Jarsj J, Karimov B. Health risks from large-scale water pollution: Trends in Central Asia[J]. Environment International, 2011, 37(2): 435-422.
[22] Karthe D, Abdullaev I, Boldgiv B, et al. Water in Central Asia: an integrated assessment for science-based management[J]. Environmental Earth Sciences, 2017, 76(20): 1-15.
[23] Liu Wen, Ma Long, Li Yaoming, et al. Heavy metals and related humanhealth risk assessment for river waters in the Issyk-Kul Basin, Kyrgyzstan, Central Asia[J]. International Journal of Environmental Research and Public Health, 2020, 17(10): 3506-3518.
[24] Chen Yaning, Fang Gonghuan, Hao Haichao, et al. Water use efficiency data from 2000 to 2019 in measuring progress towards SDGs in Central Asia[J]. Big Earth Data, 2022, 6(1): 90-102.
[25] Hill A, Wilson A, Minbaeva C, et al. Hydrologic controls and water vulnerabilities in the Naryn River Basin, Kyrgyzstan: A socio-hydro case study of water stressors in Central Asia[J]. Water, 2017, 9(5): 325-340.
[26] 于水, 陈迪桃, 黄法融, 等. 中亚农业水资源脆弱性空间格局及分区研究[J]. 中国农业资源与区划, 2020, 41(4): 11-20.
[26] [ Yu Shui, Chen Ditao, Huang Farong, et al. Spatial pattern and zoning of agricultural water resources vulnerability during crop growth period in Central Asia[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2020, 41(4): 11-20.]
[27] 吴淼, 张小云, 王丽贤, 等. 吉尔吉斯斯坦水资源及其利用研究[J]. 干旱区研究, 2011, 28(3): 455-462.
[27] [ Wu Miao, Zhang Xiaoyun, Wang Lixian, et al. Study on water resources and its utilization in Kyrgyzstan[J]. Arid Zone Research, 2011, 28(3): 455-462. ]
[28] 崔丹, 陈馨, 曾维华. 水环境承载力中长期预警研究——以昆明市为例[J]. 中国环境科学, 2018, 38(3): 1174-1184.
[28] [ Cui Dan, Chen Xin, Zeng Weihua. Investigations on the medium-to-long term early warning of water environmental carrying capacity: A case study of Kunming City[J]. China Environmental Science, 2018, 38(3): 1174-1184. ]
[29] 王富强, 李鑫, 赵衡, 等. 基于水环境容量和综合指标体系的区域水环境承载力评价[J]. 华北水利水电大学学报(自然科学版), 2021, 42(2): 24-31.
[29] [ Wang Fuqiang, Li Xin, Zhao Heng, et al. Evaluation of regional water environment carrying capacity based on water environment capacity and comprehensive index system[J]. Journal of North China University of Water Resources and Electric Power ( Natural Science Edition), 2021, 42(2): 24-31. ]
[30] 徐志青, 刘雪瑜, 袁鹏, 等. 南京市水环境承载力动态变化研究[J]. 环境科学研究, 2019, 32(4): 557-564.
[30] [ Xu Zhiqing, Liu Xueyu, Yuan Peng, et al. Dynamic change of water environment carrying capacity in Nanjing City[J]. Research of Environmental Sciences, 2019, 32(4): 557-564. ]
[31] Ho L, Goethals P L. Opportunities and challenges for the custainability of lakes and reservoirs in relation to the Sustainable Development Goals(SDGs)[J]. Water, 2019, 11(7): 1462-1480.
[32] Wu F, Zhuang Z C, Liu H L, et al. Evaluation of water resources carrying capacity using principal component Analysis: An empirical study in Huai’an, Jiangsu, China[J]. Water, 2021, 13(18): 2587-2599.
[33] 贺辉辉, 丁珏, 程宇, 等. 安徽省淮河流域水环境承载力动态评价研究[J]. 环境科学与技术, 2017, 40(S2): 280-287.
[33] [ He Huihui, Ding Jue, Cheng Yu, et al. Dynamic evaluation of water environment carrying capacity of Huai River in Anhui Province[J]. Environmental Science & Technology, 2017, 40(S2): 280-287. ]
[34] 赵传起, 朱悦, 王留锁, 等. 基于系统动力学和向量模法的亮子河流域水环境承载力评价[J]. 环境保护科学, 2021, 47(1): 136-142.
[34] [ Zhao Chuanqi, Zhu Yue, Wang Liusuo, et al. Evaluation of water environment carrying capacity of Liangzihe River Basin nased on system dynamics and vector norm method[J]. Environmental Protection Science, 2021, 47(1): 136-142. ]
[35] 郑毅, 蒋进元, 杨延梅, 等. 基于向量模法的南宁市水环境承载力评价分析[J]. 环境影响评价, 2017, 39(1): 65-68.
[35] [ Zheng Yi, Jiang Jinyuan, Yang Yanmei, et al. Assessment and analysis on water environment carrying capacity based on vector norm method in Nanning[J]. Environmental Impact Assessment, 2017, 39(1): 65-68. ]
[36] 白辉, 刘雅玲, 陈岩, 等. 层次分析法与向量模法在水环境承载力评价中的应用——以胶州市为例[J]. 环境保护科学, 2016, 42(4): 60-65.
[36] [ Bai Hui, Liu Yaling, Chen Yan, et al. Application of analytic hierarchy process and vector norm method in evaluation of water environmental carrying capacity in Jiaozhou City[J]. Environmental Protection Science, 2016, 42(4): 60-65. ]
[37] Sorg A, Mosello B, Shalpykova G, et al. Coping with changing water resources: The case of the Syr Darya river basin in Central Asia[J]. Environmental Science & Policy, 2014, 43(S1): 68-77.
[38] Wang Xuanxuan, Chen Yaning, Li Zhi, et al. Development and utilization of water resources and assessment of water security in Central Asia[J]. Agricultural Water Management, 2020, 240: 106297-106307.
[39] Zakir B, Kamshat T, Ronny B, et al. Water related health problems in Central Asia: A review[J]. Water, 2016, 8(6): 219-231.
Outlines

/