Weather and Applied Climate

Various characteristics of the mesoscale convection system of a convective rainstorm in the Hetao area of Inner Mongolia

Expand
  • 1. Inner Mongolia Autonomous Region Meteorological Observatory, Huhhot 010051, Inner Mongolia, China
    2. Inner Mongolia University, Huhhot 010020, Inner Mongolia, China
    3. Inner Mongolia Meteorological Service, Huhhot 010051, Inner Mongolia, China
    4. Inner Mongolia Meteorological Training Center, Huhhot 010051, Inner Mongolia, China

Received date: 2022-04-16

  Revised date: 2022-07-07

  Online published: 2023-01-17

Abstract

Based on conventional observation data, FY4A satellite cloud pictures, Doppler radar data, and reanalysis data, the occurrence and various characteristics of the mesoscale convective system (MCS) of the heavy rain process in the Hetao area of Inner Mongolia on July 19, 2018, were analyzed. The results show that: (1) The stable and less moving subtropical high, the 500hPa upper trough, the low-level shear line, the low-level southwest jet, the 300 hPa upper-altitude jet, and the surface low pressure provide a favorable circulation background. (2) The stable low-level southwest jet provides enough water vapor transport. Pseudo-equivalent potential temperature high energy tongue, deep warm cloud layer, high-intensity CAPE, cold advection intrusion behind the upper trough, and the unstable air layer together provide better environmental conditions for the heavy rainstorm. (3) The two successively developed MCS caused the heavy rain process. The convective rainstorm is mainly caused by the slow movement of the east-west MCS along the Yinshan Mountains, 20 mm·h-1 heavy rain appears at the edge of upwind cloud clusters and the strong TBB gradient areas. (4) The east-west echo moves slowly along the direction of the echo wavelength axis. The strong echo moves slowly from west to east to form a significant “train effect,” causing continuous heavy rain for more than five hours. The north-south direction echo lasts longer, but its moving direction is vertical to the direction of the echo wavelength axis, and the moving speed is faster, so the intensity of the rainstorm produced is weaker than the east-west direction. (5) The surface convergence line is the main factor that triggered the MCS occurrence and development, Hetao area complex terrain, and the pulsation of the low-level jet both promote the effect. The almost overlapping distribution of the surface mesoscale convergence line and the Yinshan Mountains are favorable to the continuation of rain and the convective rainstorm.

Cite this article

HUANG Xiaolu,LI Ruiqing,LI Linhui,LIN Hongjie,YAO Lebao . Various characteristics of the mesoscale convection system of a convective rainstorm in the Hetao area of Inner Mongolia[J]. Arid Zone Research, 2022 , 39(6) : 1728 -1738 . DOI: 10.13866/j.azr.2022.06.04

References

[1] 宋桂英, 李孝泽, 孙永刚, 等. 内蒙古干旱-半干旱带2012年“7·20”极端暴雨事件的特征及成因[J]. 冰川冻土, 2013, 35(4): 883-889.
[1] [ Song Guiying, Li Xiaoze, Sun Yonggang, et al. Characteristics and causes of the extreme rainstorm July 20 2012 in the arid and semiarid zone in Inner Mongolia[J]. Journal of Glaciology and Geocryology, 2013, 35(4): 883-889. ]
[2] 张桂莲, 杭月荷, 付丽娟, 等. “列车效应”诱发的一次河套地区致灾暴雨成因[J]. 高原气象, 2020, 39(4): 788-795.
[2] [ Zhang Guilian, Hang Yuehe, Fu Lijuan, et al. Causes of a torrential rainstorm induced by “train effect” in Hetao area[J]. Plateau Meteorology, 2020, 39(4): 788-795. ]
[3] 马爱华, 岳大鹏, 赵景波, 等. 近60 a来内蒙古极端降水时空变化及其影响[J]. 干旱区研究, 2020, 37(1): 74-85.
[3] [ Ma Aihua, Yue Dapeng, Zhao Jingbo, et al. Spatiotemporal variation and effect of extreme precipitation in Inner Mongolia in recent 60 years[J]. Arid Zone Research, 2020, 37(1): 74-85. ]
[4] 王澄海, 杨金涛, 杨凯, 等. 过去近60 a黄河流域降水时空变化特征及未来30 a变化趋势[J]. 干旱区研究, 2022, 39(3): 708-722.
[4] [ Wang Chenghai, Yang Jintao, Yang Kai, et al. Changing precipitation characteristics in the yellow river basin in the last 60 years and tendency prediction for next 30 years[J]. Arid Zone Research, 2022, 39(3): 708-722. ]
[5] 丁一汇. 陶诗言先生在中国暴雨发生条件和机制研究中的贡献[J]. 大气科学, 2014, 38(4): 616-626.
[5] [ Ding Yihui. Contributions of Prof Tao Shiyan to the study of formation conditions and mechanisms of heavy rainfalls in China[J]. Chinese Journal of Atmospheric Sciences, 2014, 38(4): 616-626. ]
[6] 何光碧, 曾波, 郁淑华, 等. 青藏高原周边地区持续性暴雨特征分析[J]. 高原气象, 2016, 35(4): 865-874.
[6] [ He Guangbi, Zeng Bo, Yu Shuhua, et al. Analysis of durative rainstorm characteristics occurred in the ambient area of Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2016, 35(4): 865-874. ]
[7] 李晓霞, 尚大成, 谌芸, 等. 甘肃陇南两次不同强度暴雨天气的中尺度特征分析[J]. 高原气象, 2013, 32(5): 1389-1399.
[7] [ Li Xiaoxia, Shang Dacheng, Chen Yun, et al. Mesoscale analysis on two different intensity rainstorm processes in the east of Gansu Province[J]. Plateau Meteorology, 2013, 32(5): 1389-1399. ]
[8] 刘新伟, 叶培龙, 伏晶, 等. 高原切边线形态演变对高原边坡一次降水过程的影响分析[J]. 高原气象, 2020, 39(2): 245-253.
[8] [ Liu Xinwei, Ye Peilong, Fu Jing, et al. The influence of the morphological evolution of plateau shear line on a precipitation weather process over plateau slope[J]. Plateau Meteorology, 2020, 39(2): 245-253. ]
[9] 王劲松, 李耀辉, 康风琴, 等. 西北区东部一次暴雨的数值模拟试验[J]. 高原气象, 2002, 21(3): 258-266.
[9] [ Wang Jingsong, Li Yaohui, Kang Fengqin, et al. Characteristic quantity analyses of boundary layer from mesoscale model[J]. Plateau Meteorology, 2002, 21(3): 258-266. ]
[10] 杨晓军, 叶培龙, 徐丽丽, 等. 一次青藏高原东北侧边坡强对流暴雨的中尺度对流系统演变特征[J]. 高原气象, 2022, 41(4): 839-849.
[10] [ Yang Xiaojun, Ye Peilong, Xu Lili, et al. The variation characteristics of mesoscale convection system in a severe convective torrential rain over the northeast slope of the Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2022, 41(4): 839-849. ]
[11] 井喜, 李强, 屠妮妮, 等. 黄土高原一次β中尺度突发性暴雨特征及成因[J]. 暴雨灾害, 2013, 32(3): 242-248.
[11] [ Jing Xi, Li Qiang, Tu Nini, et al. Analysis on characteristics and causation of a meso β scale paroxysmal rainstorm on Loess Plateau[J]. Torrential Rain and Disasters, 2013, 32(3): 242-248. ]
[12] 曾勇, 杨莲梅. 南疆西部一次暴雨强对流过程的中尺度特征分析[J]. 干旱气象, 2017, 35(3): 475-484.
[12] [ Zeng Yong, Yang Lianmei. Mesoscale characteristic analysis of a severe convective weather with torrential rain in the west of southern Xinjiang[J]. Journal of Arid Meteorology, 2017, 35(3): 475-484. ]
[13] 王宝鉴, 孔祥伟, 傅朝, 等. 甘肃陇东南一次大暴雨的中尺度特征分析[J]. 高原气象, 2016, 35(6): 1551-1564.
[13] [ Wang Baojian, Kong Xiangwei, Fu Chao, et al. Analysis on mesoscale characteristics of a rainstorm process in southeastern Gansu[J]. Plateau Meteorology, 2016, 35(6): 1551-1564. ]
[14] 付双喜, 张鸿发, 楚荣忠. 河西走廊中部一次强降水过程的多普勒雷达资料分析[J]. 干旱区研究, 2009, 26(5): 656-663.
[14] [ Fu Shuangxi, Zhang Hongfa, Chu Rongzhong. Analyzing on a heavy precipitation with doppler radar data in the middle of Hexi Corridor[J]. Arid Zone Research, 2009, 26(5): 656-663. ]
[15] 慕建利, 李泽椿, 谌芸, 等. 一次陕西关中强暴雨中尺度系统特征分析[J]. 高原气象, 2014, 33(1): 148-161.
[15] [ Mu Jianli, Li Zechun, Chen Yun, et al. Feature analyses of mesoscale convective system of a heavy rainfall in the central Shaanxi plain[J]. Plateau Meteorology, 2014, 33(1): 148-161. ]
[16] 俞小鼎. 2012年7月21日北京特大暴雨成因分析[J]. 气象, 2012, 38(11):1313-1329.
[16] [ Yu Xiaoding. Investigation of Beijing extreme flooding event on 21 July 2012[J]. Meteorological Monthly, 2012, 38(11):1313-1329.]
[17] 孙继松, 何娜, 王国荣, 等. “7·21”北京大暴雨系统的结构演变特征及成因初探[J]. 暴雨灾害, 2012, 31(3):218-225.
[17] [ Sun Jisong, He Na, Wang Guorong. et al. Preliminary analysis on synoptic configuration evolvement and mechanism of a torrential rain occurring in Beijing on 21 July 2012[J]. Torrential Rain and Disasters, 2012, 31(3):218-225. ]
[18] 赵庆云, 张武, 陈晓燕, 等. 一次六盘山两侧强对流暴雨中尺度对流系统的传播特征[J]. 高原气象, 2018, 37(3): 767-776.
[18] [ Zhao Qingyun, Zhang Wu, Chen Xiaoyan, et al. Propagation characteristics of mesoscale convection system in an event of severe convection rainstorm over both sides of Liupanshan Mountains[J]. Plateau Meteorology, 2018, 37(3): 767-776. ]
[19] 贺晓露, 汪小康, 郝元甲, 等. 复杂地形影响下鄂东北梅雨锋大暴雨MCS的触发和演变[J]. 暴雨灾害, 2020, 39(6): 611-619.
[19] [ He Xiaolu, Wang Xiaokang, Hao Yuanjia, et al. Initiation and evolution of MCS of Meiyu frontal heavy rain event in the complex terrain of Northeast Hubei[J]. Torrential Rain and Disasters, 2020, 39(6): 611-619. ]
[20] 廖移山, 冯新, 石燕, 等. 2008年“7·22”襄樊特大暴雨的天气学机理分析及地形的影响[J]. 气象学报, 2011, 69(6): 945-955.
[20] [ Liao Yishan, Feng Xin, Shi Yan, et al. Analysis of the mechanism for “2008·7·22” excessive rain event in Xiangfan with a focus on the terrain effect[J]. Acta Meteorologica Sinica, 2011, 69(6): 945-955. ]
[21] 张家国, 周金莲, 谌伟, 等. 大别山西侧极端降水中尺度对流系统结构与传播特征[J]. 气象学报, 2015, 41(2): 291-304.
[21] [ Zhang Jiaguo, Zhou Jinlian, Chen Wei, et al. The structure and propagation characteristics of the extreme rain producing MCS on the westside of Dabie Mountain[J]. Acta Meteorologica Sinica, 2015, 41(2): 291-304. ]
[22] 付双喜, 张洪芬, 杨丽杰, 等. 地形影响下祁连山北麓不同类型降水特征对比分析[J]. 干旱区研究, 2021, 38(5): 1226-1234.
[22] [ Fu Shuangxi, Zhang Hongfen, Yang Lijie, et al. Comparative analysis of different types of precipitation characteristics in the northern foot of Qilian Mountain under the influence of topography[J]. Arid Zone Research, 2021, 38(5): 1226-1234. ]
[23] 韩经纬, 吴学宏, 宋桂英, 等. 2006年春季内蒙古久旱转雨过程分析[J]. 气象科学, 2009, 29(2): 235-240.
[23] [ Han Jingwei, Wu Xuehong, Song Guiying, et al. Characteristic ananlysis of prolonged drought turning to rain in Inner Monglia in spring 2006[J]. Scientia Meteorologica Sinica, 2009, 29(2): 235-240. ]
[24] 李春筱, 董治宝, 徐永旺, 等. 内蒙古额济纳旗一次局地大到暴雨的成因分析[J]. 中国沙漠, 2011, 31(3): 774-779.
[24] [ Li Chunxiao, Dong Zhibao, Xu Yongwang, et al. Cause of a local heavy hard rain in Ejina Banner, Inner Mongolia[J]. Journal of Desert Research, 2011, 31(3): 774-779. ]
[25] 孟雪峰, 孙永刚, 萨日娜, 等. 河套气旋发展东移与北京暴雨的关系[J]. 气象, 2013, 39(12): 1542-1549.
[25] [ Meng Xuefeng, Sun Yonggang, Sa Rina, et al. Correlation between eastward developing of Hetao cyclone and the severe rainstorm in Beijing on 21 July 2012[J]. Meteorological Monthly, 2013, 39(12): 1542-1549. ]
[26] Doswell C A. The distinction between large-scale and meso-scale contribution to severe convection: a case study example[J]. Weather Forecast, 1987, 2(1): 3-16.
Outlines

/