Ecology and Environment

Spatial-temporal variation and driving factors of vegetation net ecosystem productivity in Qinghai Province

Expand
  • 1. Resource And Environmental Engineering College of Yangtze University, Wuhan 430000, Hubei, China
    2. Huanghe Hy-Dropower Developement Co. Ltd, Xining 810000, Qinghai, China
    3. China Yangtze Power Co. Ltd, Yichang 443000, Hubei, China

Received date: 2022-01-16

  Revised date: 2022-06-06

  Online published: 2022-10-25

Abstract

Based on NPP data from 2000 to 2020 and the vegetation net ecosystem productivity (NEP) calculated by the soil respiration model, the spatial-temporal adaptation and driving factors of vegetation NEP in Qinghai Province were quantitatively analyzed via trend analysis, 6 partial correlation analysis, and geographical detector to explore the spatiotemporal adaptation of vegetation carbon sequestration and its driving factors. The results showed that the vegetation NEP fluctuated over the past 20 years, with an average annual increase of 1.54 g C·m-2·a-1. The spatial variation of annual vegetation NEP varied greatly, decreasing from southeast to northwest, and 71.08% of the area either remained unchanged or increased. Normalized difference vegetation index (NDVI) has the strongest explanatory power for vegetation NEP, and climate and human factors, such as precipitation, temperature, and population density are stronger factors for the spatial differentiation of NEP. Because the two-factor interaction will increase the strength of the argument for vegetation NEP spatial differentiation, it is necessary to pay attention to multi-factor cooperation in the future to enhance the sequestration capacity of carbon in Qinghai Province.

Cite this article

YE Xiaojuan,WANG Yonghui,PAN Hongzhong,BAI Yu,DONG Defu,YAO Huaming . Spatial-temporal variation and driving factors of vegetation net ecosystem productivity in Qinghai Province[J]. Arid Zone Research, 2022 , 39(5) : 1673 -1683 . DOI: 10.13866/j.azr.2022.05.31

References

[1] 朴世龙, 方精云, 黄耀. 中国陆地生态系统碳收支[J]. 中国基础科学, 2010, 12(2): 20-22, 65.
[1] [Piao Shilong, Fang Jingyun, Hua-ng Yao. The carbon balance of terrestrial ecosystems in China[J]. China Basic Science, 2010, 12 (2): 20-22, 65. ]
[2] 张梅, 黄贤金, 揣小伟, 等. 中国净生态系统生产力空间分布及变化趋势研究[J]. 地理与地理信息科学, 2020, 36(2): 69-74.
[2] [Zhang Mei, Huang Xianjin, Tuo Xiaowei, et al. Spatial distribution and changing trends of net ecosystem productivity in China[J]. Geography and Geo-Information Science, 2020, 36(2): 69-74. ]
[3] 常顺利, 杨洪晓, 葛剑平. 净生态系统生产力研究进展与问题[J]. 北京师范大学学报(自然科学版), 2005, 41 (5): 517-521.
[3] [C-hang Shunli, Yang Hongxiao, Ge Jianping, et al. Advance and questions in net ecosystem production[J]. Journal of Beijing Normal University(Natural Science Edition), 2005, 41(5): 517-521. ]
[4] 马昊翔, 陈长成, 宋英强, 等. 青海省近10年草地植被覆盖动态变化及其驱动因素分析[J]. 水土保持研究, 2018, 25(6): 137-145.
[4] [Ma Haoxiang, Chen Changcheng, Song Yingqiang, et al. Analysis of vegetation cover change and its driving factors over the past ten years in Qinghai Province[J]. Research of Soil and Water Conservation, 2018, 25(6): 137-145. ]
[5] Wu J, Chen B, Mao J, et al. Spatiotemporal evolution of carbon sequestration vulnerability and its relationship with urbanization in China’s coastal zone[J]. Science of the Total Environment, 2018, 645: 692-701.
[6] 张博, 周伟, 张福存. 1999—2018年青海省土地退化遥感监测及其驱动力分析[J]. 水土保持通报, 2020, 40(2): 120-128, 325.
[6] [Zhang Bo, Zhou Wei, Zhang Fucun. Remote sensing monitoring and driving force analysis of land degradation in Qinghai Provi-nce from 1999 to 2018[J]. Bulletin of Soil and Water Conservation, 2020, 40(2): 120-128, 325. ]
[7] 朴世龙, 张新平, 陈安平, 等. 极端气候事件对陆地生态系统碳循环的影响[J]. 中国科学:地球科学, 2019, 49(9): 1321-1334.
[7] [Piao Shilong, Zhang Xinping, Chen Anping, et al. The impacts of climate extremes on the terrestrial carbon cycle: A review[J]. Sci-ence China Earth Sciences, 2019, 49(9): 1321-1334. ]
[8] 朴世龙, 岳超, 丁金枝, 等. 试论陆地生态系统碳汇在“碳中和”目标中的作用[J]. 中国科学: 地球科学, 2022, 65(6): 1178-1186.
[8] [Piao Shilong, Yue Chao, Ding Jinzhi, et al. Perspectives on the role of terrestrial ecosystems in the ‘carbon neutrality’ strate-gy[J]. Science China Earth Sciences, 2022, 65(6): 1178-1186. ]
[9] 刘凤, 曾永年. 2000—2015年青海高原植被碳源/汇时空格局及变化[J]. 生态学报, 2021, 41(14): 5792-5803.
[9] [Liu Feng, Zeng Yongnian. Analysis of the spatio-temporal variation of vegetation carbon source/sink in Qinghai Plateau from 2000-2015[J]. Acta Ecologica Sinica, 2021, 41(14): 5792-5803. ]
[10] 周夏飞, 於方, 曹国志, 等. 2001—2015年青藏高原草地碳源/汇时空变化及其与气候因子的关系[J]. 水土保持研究, 2019, 26(1): 76-81.
[10] [Zhou Xiafei, Yu Fang, Cao Guozhi, et al. Spatiotemporal changes of grassland carbon source/sink and its relationship with climatic factors in Qinghai-Tibet Plateau from 2001 to 2015[J]. Research of Soil and Water Conservation, 2019, 26(1): 76-81. ]
[11] 张新中, 李育, 张成琦, 等. 2000-2014年石羊河流域净生态系统生产力变化分析[J]. 兰州大学学报(自然科学版), 2020, 56(4): 486-492.
[11] [Zhang Xinzhong, Li Yu, Zhang Chengqi, et al. Analysis of the net ecosystem production changes in the Shiyang River basin from 2000 to 2014[J]. Journal of Lanzhou University(Natural Sciences Edition), 2020, 56(4): 486-492. ]
[12] 刘春雨. 省域生态系统碳源/汇的时空演变及驱动机制——以甘肃省为例[D]. 兰州: 兰州大学, 2015.
[12] [Liu Chunyu. The Temporal-Spatial Chan-ges and Dynamic Mechanism of Carbon Source/Sink of Provincial Ecosystem: A Case of Gansu Provice[D]. Lanzhou: Lanzhou University, 2015. ]
[13] 孙治娟, 谢世友. 基于地理探测器的云南省净初级生产力时空演变及因子探测[J]. 生态学杂志, 2021, 40(12): 3836-3848.
[13] [Sun Zhijuan, Xie Shiyou. Spatiotemporal variation in vegetation net primary productivity and factor detection in Yunnan Province based on geodetector[J]. Chinese Journal of Ecology, 2021, 40(12): 3836-3848.]
[14] 代子俊, 赵霞, 李冠稳, 等. 基于GIMMS NDVI 3g.v1的近34年青海省植被生长季NDVI时空变化特征[J]. 草业科学, 2018, 35(4): 713-725.
[14] [Dai Zijun, Zhao Xia, Li Guanwen, et al. Spatial-temporal variations in NDVI in vegetation-growing season in Qinghai based on GIMMS NDVI 3g.v1 in past 34 years[J]. Pratacultural Science, 2018, 35(4): 713-725. ]
[15] 席文涛, 高晶. 基于地理探测器分析青藏高原降水δ18O空间分异特征[J]. 干旱区研究, 2021, 38(5): 1199-1206.
[15] [Xi Wentao, Gao Jing. Spatial heterogeneity of annual precipitation δ18O over the Tibetan Plateau based on the use of a geographical detector[J]. Arid Zone Research, 2021, 38(5): 1199-1206. ]
[16] 张强, 朱飙, 杨金虎, 等. 西北地区气候湿化趋势的新特征[J]. 科学通报, 2021, 66(28): 3757-3771.
[16] [Zhang Qiang, Zhu Biao, Y-ang Jinhu, et al. New characteristics about the climate humidification trend in Northwest China[J]. Chinese Science Bulletin, 2021: 1-15. ]
[17] 朴世龙, 张宪洲, 汪涛, 等. 青藏高原生态系统对气候变化的响应及其反馈[J]. 科学通报, 2019, 64(27): 2842-2855.
[17] [Piao Shil-ong, Zhang Xianzhou, Wang Tao, et al. Responses and feedback of the Tibetan Plateau’s alpine ecosystem to climate change in Chin-ese[J]. Chinese Science Bulletin, 2019, 64(27): 2842-2855 ]
[18] 刘旻霞, 焦骄, 潘竟虎, 等. 青海省植被净初级生产力(NPP)时空格局变化及其驱动因素[J]. 生态学报, 2020, 40(15): 5306-5317.
[18] [Liu Minxia, Pan Jinghu, et al. Spatial and temporal patterns of planting NPP and its driving factors in Qinghai Province[J]. Acta Ecologica Sinica, 2020, 40(15): 5306-5317. ]
[19] Song Y Z, Wang J F, Ge Y, et al. An optimal parametersbased geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data[J]. GIScience & Remote Sensing, 2021, 57(5): 1-17.
[20] Li J S, Guo X M, Chuai X W, et al. Reexamine China’s terrestrial ecosystem carbon balance under land use-type and climate change[J]. Land Use Policy, 2021, 102: 105275.
[21] Grosso D S, Parton W, Stohlgren T, et al. Global potential net primary production pedicted from vegetation class, precipitation, and temperature[J]. Ecology, 2008, 89(8): 2117-2126.
[22] 裴志永, 周才平, 欧阳华, 等. 青藏高原高寒草原区域碳估测[J]. 地理研究, 2010, 29(1): 102-110.
[22] [Pei Zhiyong, Zhou Caiping, Ouyang Hua, et al. A carbon budget of alpine steppe area in the Tibetan Plateau[J]. Geographical Research, 2010, 29(1): 102-110. ]
[23] 潘竟虎, 文岩. 中国西北干旱区植被碳汇估算及其时空格局[J]. 生态学报, 2015, 35(23): 7718-7728.
[23] [Pan Jinghu, Wen Yan. E-stimation and spatial-temporal characteristics of carbon sink in the arid region of Northwest China[J]. Acta Ecologica Sinica, 2015, 35(23): 7718-7728. ]
[24] Zhang Z, Ju W, Zhou Y. The effect of water stress on net primary productivity in Northwest China[J]. Environmental Science and Pollution Research, 2021, 28(46): 65885-65898.
[25] 温旭丁, 罗赵慧, 符良刚. 气候与土地利用变化对粤港澳大湾区NPP的影响[J]. 广西科学, 2021, 28(3): 290-300.
[25] [Wen Xuding, Luo Zhaohui, Fu Lianggang. Effects of climate and land use change on NPP in Guangdong-Hong Kong-Macao Greater Bay Area[J]. Guangxi Science, 2021, 28(3): 290-300. ]
[26] 牟乐, 芦奕晓, 杨惠敏, 等. 1981—2015年中国西北牧区植被覆盖的时空变化[J]. 干旱区研究, 2018, 35(3): 615-623.
[26] [Mou Le, Lu Yixiao, Yang Huimin, et al. Spatiotemporal variation of vegetation cover in the pastoral area in Northwestern China during the period of 1981-2015[J]. Arid Zone Research, 2018, 35(3): 615-623. ]
[27] Chen H, Bai X, Li Y, et al. Soil drying weakens the positive effect of climate factors on global gross primary production[J]. Ecological Indicators, 2021, 129(12): 1-13.
[28] 王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1): 116-134.
[28] [Wang Jinfeng, Xu Chengdong. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116-134. ]
[29] Lei H M, Yang D W. Interannual and seasonal variability in evapotranspiration and energy partitioning over an irrigated cropland in the North China Plain[J]. Agricultural and Forest Meteorology, 2010, 150(4): 581-589.
[30] 陈雪娇, 周伟, 杨晗. 2001—2017年三江源区典型草地群落碳源/汇模拟及动态变化分析[J]. 干旱区地理, 2020, 43(6): 1583-1592.
[30] [Chen Xuejiao, Zhou Wei, Yang Han. Simulation and dynamic change of carbon source/sink in the typical grassland communityes in the Three River Source Area from 2001 to 2017[J]. Arid Land Geography, 2020, 43(6): 1583-1592. ]
[31] 左婵, 王军邦, 张秀娟, 等. 三江源国家公园植被净初级生产力变化趋势及影响因素研究[J]. 生态学报, 2022, 42(14): 1-15.
[31] [Zuo Chan, Wang Junbang, Zhang Xiujuan, et al. Changes and influencing factors of vegetation net primary productivity in the Sanjian-gyuan National Park[J]. Acta Ecologica Sinica, 2022, 42(14): 1-15. ]
[32] 朱伟伟. 三江源净初级生产力(NPP) (2000-2015). 国家青藏高原科学数据中心, 2019.
[32] [Zhu Weiwei. Dataset of net primary productivity in Sanjiangyuan region (2000-2015). National Tibetan Plateau Data Center, 2019. ]
[33] 孙庆龄, 李宝林, 李飞, 等. 三江源植被净初级生产力估算研究进展[J]. 地理学报, 2016, 71(9): 1596-1612.
[33] [Sun Qingling, Li Baolin, Li Fei, et al. Review on the estimation of net primary productivity of vegetation in the Three-River Headwater Region, China[J]. Acta Geographica Sinica, 2016, 71(9): 1596-1612. ]
[34] 秦淑琦, 彭琴, 董云社, 等. 土壤呼吸对降雨变化和氮沉降交互作用响应的研究进展[J]. 应用生态学报, 2022, 33(16): 1-8.
[34] [Qin Shuqi, Peng Qin, Dong Yunshe, et al. Response of soil respiration to the interaction of rainfall changes and nitrogen deposition: A review[J]. Chinese Journal of Applied Ecology, 2022, 33(16): 1-8. ]
[35] Zhang J, Hao X, Hao H, et al. Climate change decreased net ecosystem productivity in the arid region of Central Asia[J]. Remote Sensing, 2021, 13(21): 4449.
[36] 贠银绢. 2000—2015年石羊河流域植被碳汇时空变化及影响因子研究[D]. 兰州: 西北师范大学, 2018.
[36] [Yun Yinjuan. Spat-ial-Temporal Simulation of Vegetation Carbon Sink and Its Influential Factors in Shiyang River Basin from 2000 to 2015[D]. Lanzhou: Northwest Normal University, 2018. ]
[37] 王桂波, 南灵. 陕西省耕地利用碳源/汇时空差异分析[J]. 中国农学通报, 2012, 28(2): 245-249.
[37] [Wang Guibo, Nan Ling. Res-earch on the Spatio-temporal difference of carbon source/sink of arable land resource use in Shannxi Province[J]. Chinese Agricultural Science Bulletin, 2012, 28(2): 245-249. ]
Outlines

/