Ecology and Environment

Transport law and control system of wind-blown sand along the desert highway of South Xinjiang Tazhong-38th Corp

Expand
  • 1. College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832003, Xinjiang, China
    2. Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China

Received date: 2022-01-26

  Revised date: 2022-05-09

  Online published: 2022-10-25

Abstract

The Tazhong-38th Corp Desert Highway, currently under construction, extends from the hinterland of Taklamakan Desert to its southeastern edge. Different degrees of wind and sand hazards are distributed along the whole route, posing serious threats to the construction, service, and maintenance of the desert highway. Based on remote sensing image interpretation and wind data analysis, the wind and sand environment characteristics and dune movement rules in different sections of the desert highway were assessed, and a corresponding sand hazard prevention system framework is proposed. Our analysis showed that the prevailing wind directions along the desert highway are NE, ENE, and E, and the frequency of sandy wind increases from 21.7% to 33.8%. The wind direction characteristic develops from sharp bimodal to blunt bimodal, and the wind and sand hazards gradually become more severe: the drift potential along the section ranges from 178.23 to 309.43 VU, the wind energy environment is low to medium, the resultant drift direction is between SW-WSW, and the wind direction variation rate is medium. The annual average dune movement speed is between 3.16 and 6.26 m.a-1, and there are obvious spatial differences in dune movement speed and direction. The consistency between dune movement direction and the resultant drift direction is poor in some sections. Based on the above environmental characteristics of the desert highway sections, a sand control system for the desert highway, combining blocking and solidification, is proposed. The results of our study have practical application value in the development of prevention and mitigation measures for desert highway sand damage.

Cite this article

MA Benteng,CHENG Jianjun,LEI Jiaqiang,DING Bosong,GAO Li,An Yuanfeng,ZHENG Zhipeng . Transport law and control system of wind-blown sand along the desert highway of South Xinjiang Tazhong-38th Corp[J]. Arid Zone Research, 2022 , 39(5) : 1663 -1672 . DOI: 10.13866/j.azr.2022.05.30

References

[1] 周成龙, 杨兴华, 钟昕洁, 等. 塔克拉玛干沙漠腹地沙尘天气特征[J]. 干旱区研究, 2017, 34(2): 324-329.
[1] [Zhou Chenglong, Yang Xinghua, Zhong Xinjie, et al. Dust weather in hinterland of the Taklamakan Desert[J]. Arid Zone Research, 2017, 34(2): 324-329. ]
[2] 周成龙, 杨兴华, 刘厚勇, 等. 塔克拉玛干沙漠腹地塔中地区的风动力环境[J]. 水土保持通报, 2014, 34(3): 218-222.
[2] [Zhou Chenglong, Yang Xinghua, Liu Houyong, et al. Wind power environment of tazhong area in hinterland of Taklimakan Desert[J]. Bulletin of Soil and Water Conservation, 2014, 34(3): 218-222. ]
[3] 陈柏羽, 程建军, 李生宇. 新疆S214省道高立式芦苇沙障合理间距分析[J]. 干旱区研究, 2020, 37(3): 782-789.
[3] [Chen Boyu, Cheng Jianjun, Li Shengyu. Reasonable spacing of high-parallel reed sand barriers along the Xinjiang S214 provincial highway[J]. Arid Zone Research, 2020, 37(3): 782-789. ]
[4] 于涛, 李荫堂, 郭毅, 等. 悬移层风沙运动数值模拟[J]. 干旱区地理, 2004, 27(3): 347-351.
[4] [Yu Tao, Li Yintang, Guo Yi, et al. Numerical simulation of aeolian sand movement in suspended region[J]. Arid Land Geography, 2004, 27(3): 347-351. ]
[5] Kilibarda Z, Kilibarda V. Seasonal geomorphic processes and rates of sand movement at Mount Baldy dune in Indiana, USA[J]. Aeolian Research, 2016, 23: doi: 10.1016/j.aeolia.2016.10.004.
[6] 杨军怀, 董治宝, 刘铮瑶, 等. 库鲁克沙漠风沙地貌与沙丘移动[J]. 中国沙漠, 2019, 39(4): 1-8.
[6] [Yang Junhuai, Dong Zhibao, Liu Zhengyao, et al. Aeolian geomorphology and dune migration in the Quruq Desert, China[J]. Journal of Desert Research, 2019, 39(4): 1-8. ]
[7] 董治宝, 陈广庭, 颜长珍, 等. 塔里木沙漠石油公路沿线沙丘移动规律[J]. 中国沙漠, 1998, 18(4): 34-39.
[7] [Dong Zhibao, Chen Guangting, Yan Changzhen, et al. The sand dune movement along the Tarim Desert oil transportation highway[J]. Journal of Desert Research, 1998, 18(4): 34-39. ]
[8] 邹桂香, 高宏智, 边庆策, 等. 沙丘移动速度的观测与计算[J]. 干旱区资源与环境, 1988, 2(3): 36-42.
[8] [Zou Guixiang, Gao Hongzhi, Bian Qingce, et al. Measurement and computation of desert dune movement speed[J]. Journal of Arid Land Resources and Environment, 1988, 2(3): 36-42. ]
[9] Yang Junhuai, Dong Zhibao, Liu Zhengyao, et al. Migration of barchan dunes in the western Quruq Desert, northwestern China[J]. Earth Surface Processes and Landforms, 2019, 44(10): doi: 10.1002/esp.4629.
[10] Mutiry M, Hermas E, Ghamdi K, et al. Estimation of dune migration rates north Riyadh City, KSA, using SPOT 4 panchromatic images[J]. Journal of African Earth Sciences, 2016, 124: doi: 10.1016/j.jafrearsci.2016.09.034.
[11] 俎瑞平, 张克存, 屈建军, 等. 塔克拉玛干沙漠风况特征研究[J]. 干旱区地理, 2005, 28(2): 167-170.
[11] [Zu Ruiping, Zhang Kecun, Qu Jianjun, et al. Study on wind regime characteristics in the Taklimakan Desert[J]. Arid Land Geography, 2005, 28(2): 167-170. ]
[12] 安志山, 史博源, 谭立海, 等. 玛曲高寒草甸风沙环境与沙化类型研究[J]. 干旱区研究, 2021, 38(4): 1058-1064.
[12] [An Zhishan, Shi Boyuan, Tan Lihai, et al. Sand environment and type during sandy desertification of an alpine meadow[J]. Arid Zone Research, 2021, 38(4): 1058-1064. ]
[13] 李生宇, 范敬龙, 王海峰, 等. 蒙古高原交通干线风沙(雪)危害防治技术方案[J]. 干旱区研究, 2021, 38(6): 1760-1770.
[13] [Li Shengyu, Fan Jinglong, Wang Haifeng, et al. Ecological restoration and control technology schemes for hazards of windblown sand and snow along primary communication lines in the Mongolian Plateau[J]. Arid Zone Research, 2021, 38(6): 1760-1770. ]
[14] Dong Zhibao, Chen Guangting, He Xingdong, et al. Controlling blown sand along the highway crossing the Taklimakan Desert[J]. Journal of Arid Environments, 2002, 57(3): doi: 10.1016/j.jaridenv.2002.02.001.
[15] 常方乐, 康孟珍, 王秀娟, 等. 平行智能风沙防治系统构架与功能——以植物措施为例[J]. 干旱区研究, 2019, 36(6): 1576-1583.
[15] [Chang Fangle, Kang Mengzhen, Wang Xiujuan, et al. Framework and function of aeolian sand parallel prevention and control: Application of artificial intelligence technology in sand prevention and control[J]. Arid Zone Research, 2019, 36(6): 1576-1583. ]
[16] 蔡东旭, 李生宇, 王海峰, 等. 新疆S214公路台特玛湖干涸湖盆段风沙危害及防治[J]. 中国沙漠, 2020, 40(1): 1-11.
[16] [Cai Dongxu, Li Shengyu, Wang Haifeng, et al. Aeolian hazard and comprehensive protection of S214 Highway in Taitema Playa, Xinjiang, China[J]. Journal of Desert Research, 2020, 40(1): 1-11. ]
[17] 张克存, 安志山, 何明珠, 等. 乌海至玛沁高速公路中卫段风沙环境特征及沙害防治[J]. 干旱区地理, 2021, 44(4): 983-991.
[17] [Zhang Kecun, An Zhishan, He Mingzhu, et al. Aeolian sand environments and disaster prevention along Zhongwei section of the Wuhai-Maqin Highway[J]. Arid Land Geography, 2021, 44(4): 983-991. ]
[18] 赛亚热·赛都拉, 毛东雷, 徐佳瑞, 等. 库姆塔格沙漠西缘风况特征及沙丘运移规律[J]. 水土保持学报, 2021, 35(6): 62-68.
[18] [Saidoula Saiyare, Mao Donglei, Xu Jiarui, et al. Characteristics of wind conditions and dune movement rules on the west edge of Kumtag Desert, China[J]. Journal of Soil and Water Conservation, 2021, 35(6): 62-68. ]
[19] 陈芳, 刘勇. 巴丹吉林沙漠典型地域沙丘多年变化的遥感动态分析[J]. 遥感技术与应用, 2011, 26(4): 501-507.
[19] [Chen Fang, Liu Yong. Secular annual movement of sand dunes in Badain Jaran Desert based on geographic analyses of remotely sensed imagery[J]. Remote Sensing Technology and Application, 2011, 26(4): 501-507. ]
[20] Fryberger S G, Dean G. Dune forms and wind regime[C]// Mckee E D. A Study of Global Sand Seas. Washington: United States Government Printing Office, 1979: 137-169.
[21] 雷加强, 王雪芹, 王德. 塔里木沙漠公路风沙危害形成研究[J]. 干旱区研究, 2003, 20(1):1-6.
[21] [Lei Jiaqiang, Wang Xueqin, Wang De. The formation of the blown sand disaster to the tarim Desert highway, Xinjiang, China[J]. Arid Zone Research, 2003, 20(1): 1-6. ]
[22] 李生宇, 雷加强, 徐新文, 等. 中国交通干线风沙危害防治模式及应用[J]. 中国科学院院刊, 2020, 35(6): 665-674.
[22] [Li Shengyu, Lei Jiaqiang, Xu Xinwen, et al. Patterns of blown-sand hazard control for traffic arteries in China and its application[J]. Bulletin of Chinese Academy of Sciences, 2020, 35(6): 665-674. ]
[23] 谢胜波, 屈建军, 赖远明, 等. 拉日铁路沙害成因、分布、特征及防治研究[J]. 干旱区资源与环境, 2016, 30(2): 170-175.
[23] [Xie Shengbo, Qu Jianjun, Lai Yuanming, et al. The causes, distributions, characteristics of sand hazards and its controls for Lhasa-Shigatse Railway[J]. Journal of Arid Land Resources and Environment, 2016, 30(2): 170-175. ]
[24] 丁录胜, 程建军, 陈柏羽, 等. 铁路高立式芦苇沙障防风阻沙的现场测试与流场模拟计算[J]. 水土保持通报, 2019, 39(3): 156-162.
[24] [Ding Lusheng, Cheng Jianjun, Chen Boyu, et al. Field test and numerical simulation of windbreak and sand-resisting on high-parallel reed sand-barriers along railway[J]. Bulletin of Soil and Water Conservation, 2019, 39(3): 156-162. ]
[25] 韩致文, 刘贤万, 姚正义, 等. 复膜沙袋阻沙体与芦苇高立式方格沙障防沙机理风洞模拟实验[J]. 中国沙漠, 2000, 20(1): 41-45.
[25] [Han Zhiwen, Liu Xianwan, Yao Zhengyi, et al. Wind tunnel test on sand preventing mechanism of double-filmed sand bag obstacle and upright checkerboard sand-barrier[J]. Journal of Desert Research, 2000, 20(1): 41-45. ]
[26] 朱震达. 塔克拉玛干沙漠风沙地貌研究[M]. 北京: 科学出版社, 1981: 56-59.
[26] [Zhu Zhenda. Aeolian Geomorphology of Taklimakan Desert[M]. Beijing: Science Press, 1981: 56-59. ]
[27] 顿耀权, 屈建军, 康文岩, 等. 包兰铁路沙坡头段防护体系研究综述[J]. 中国沙漠, 2021, 41(3): 66-74.
[27] [Dun Yaoquan, Qu Jianjun, Kang Wenyan, et al. Progress and prospect of research on the protective system of Shapotou section of the Baotou-Lanzhou Railway[J]. Journal of Desert Research, 2021, 41(3): 66-74. ]
[28] 徐峻龄, 裴章勤, 王仁化. 半隐蔽式麦草方格沙障防护带宽度的探讨[J]. 中国沙漠, 1982, 2(3): 20-27.
[28] [Xu Junling, Pei Zhangqin, Wang Renhua. A research on the width of the protection belt of half-hidden straw checkerboard barriers[J]. Journal of Desert Research, 1982, 2(3): 20-27. ]
[29] 胡孟春, 屈建军, 赵爱国, 等. 沙坡头铁路防护体系防护效益系统仿真研究[J]. 应用基础与工程科学学报, 2004, 12(2): 140-147.
[29] [Hu Mengchun, Qu Jianjun, Zhao Aiguo, et al. System simulation on efficiency of railway protection system in Shapotou[J]. Journal of Basic Science and Engineering, 2004, 12(2): 140-147. ]
Outlines

/