Ecology and Environment

Spatiotemporal patterns and characteristics of carbon emissions in the Loess Plateau: A case study of Qingcheng County

Expand
  • 1. College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
    2. Key Laboratory of Western China’s Environmental Systems (Ministry of Education), Lanzhou University, Lanzhou 730000, Gansu, China
    3. Research Institute for Circular Economy in Western China, Lanzhou University, Lanzhou 730000, Gansu, China
    4. Institute of Green Development for the Yellow River Drainage Basin, Lanzhou University, Lanzhou 730000, Gansu, China
    5. Institute of County Economic Development, Lanzhou University, Lanzhou 730000, Gansu, China
    6. Research and Evaluation Center for Ecological Civilization Construction, Lanzhou University, Lanzhou 730000, Gansu, China

Received date: 2022-02-24

  Revised date: 2022-05-15

  Online published: 2022-10-25

Abstract

In China, the county is not only an important contributor to carbon emissions and a major carbon sink zone but also a key administrative unit for the implementation of China’s national goals for carbon peak and carbon neutrality. Focusing on Qingcheng County as a typical county in the Loess Plateau, we investigate the carbon emission characteristics and spatiotemporal patterns, to raise awareness of the need for ecological protection of the Yellow River Basin, while achieving high-quality development and green and low carbon transformation. The key results of our study are as follows. (1) The change and structure of county carbon emission in underdeveloped areas have distinct characteristics. Industries below the designated size are the largest source of carbon emissions in Qingcheng County, having a low proportion of industrial carbon emissions but a relatively high proportion of service sector and household carbon emissions. (2) The spatial distribution of carbon emissions in Qingcheng County conforms to the Pareto Principle: 80% of carbon emissions are concentrated in 20% of the region, which is characterized by “overall dispersion and local agglomeration”. The high carbon zones are mainly concentrated in the valley, broken plateau area, and urban area. The medium carbon zones are mainly distributed in the broken plateau area and along the traffic line. Low carbon zones are widely distributed in ridge, hill, and gully areas. (3) The county carbon emissions in the Loess Plateau show clear temporal and spatial pattern differences that are affected by differences in topography. The largest patch index of medium and high carbon zones, such as urban areas, industrial zones, and major towns, increases, the integrity improves, the diversity of carbon sources decreases, and the types tend to be single. The carbon source diversity increases and the aggregation degree decreases in the ecotone between medium carbon zones and low carbon zones, such as transportation lines and residential areas.

Cite this article

LONG Zhi,SUN Yingqi,LANG Lixia,CHEN Xingpeng,ZHANG Zilong,PANG Jiaxing . Spatiotemporal patterns and characteristics of carbon emissions in the Loess Plateau: A case study of Qingcheng County[J]. Arid Zone Research, 2022 , 39(5) : 1631 -1641 . DOI: 10.13866/j.azr.2022.05.27

References

[1] 陈宇. 人类命运共同体视域中的国家传统疆域与新疆域[J]. 世界地理研究, 2021, 30(5): 893-902.
[1] [Chen Yu. Analysis on the traditional frontier and modrern frontier from the vision of Community of Shared Future[J]. World Regional Studies, 2021, 30(5): 893-902. ]
[2] Khan Uzma, Wang Huili, Ali Ishraq. A sustainable community of shared future for mankind: Origin, evolution and philosophical foundation[J]. Sustainability, 2021, 13(16): 9352. doi: 10.3390/su13169352.
[3] Nathan Andrew J, Zhang Boshu. ‘A shared future for mankind’: Rhetoric and reality in Chinese foreign policy under Xi Jinping[J]. Journal of Contemporary China, 2022, 31(133): 57-71.
[4] Zhang Hui. A community of shared future for mankind: The contemporary development of the social foundations theory of international law[J]. Social Sciences in China, 2019, 40(1): 186-202.
[5] Lashof Daniel A, Ahuja Dilip R. Relative contributions of greenhouse gas emissions to global warming[J]. Nature, 1990, 344: 529-531.
[6] Samset B H, Sand M, Smith C J, et al. Climate impacts from a removal of anthropogenic aerosol emissions[J]. Geophysical Research Letters, 2018, 45(2): 1020-1029.
[7] He Huachun, Guan Hongjun, Zhu Xiang, et al. Assessment on the energy flow and carbon emissions of integrated steelmaking plants[J]. Energy Reports, 2017, 3: 29-36.
[8] Yuan Jiahai, Xu Yan, Hu Zheng, et al. Peak energy consumption and CO2 emissions in China[J]. Energy Policy, 2014, 68: 508-523.
[9] Long Zhi, Zhang Zilong, Liang Sai, et al. Spatially explicit carbon emissions at the county scale[J]. Resources, Conservation and Recycling, 2021, 173: 105706. doi: 10.1016/j.resconrec.2021.105706.
[10] Shan Yuli, Huang Qi, Guan Dabo, et al. China CO2 emission accounts 2016-2017[J]. Scientific Data, 2020, 7(1): 54. doi: 10.1038/s41597-020-0393-y.
[11] Sarkodie Samuel Asumadu. Environmental performance, biocapacity, carbon & ecological footprint of nations: Drivers, trends and mitigation options[J]. Science of the Total Environment, 2021, 751: 141912. doi: 10.1016/j.scitotenv.2020.141912.
[12] Zhang Wei, Li Jing, Li Guoxiang, et al. Emission reduction effect and carbon market efficiency of carbon emissions trading policy in China[J]. Energy, 2020, 196: 117117. doi: 10.1016/j.energy.2020.117117.
[13] Zhou Huijun, Ping Weiying, Wang Yong, et al. China’s initial allocation of interprovincial carbon emission rights considering historical carbon transfers: Program design and efficiency evaluation[J]. Ecological Indicators, 2021, 121: 106918. doi: 10.1016/j.ecolind.2020.106918.
[14] Guo Qianqian, Su Zhifang, Chiao Chaoshin. Carbon emissions trading policy, carbon finance, and carbon emissions reduction: evidence from a quasi-natural experiment in China[J]. Economic Change and Restructuring, 2022, 55(3): 1445-1480.
[15] Li Yanmei, Li Tingting, Lu Shuangshuang. Forecast of urban traffic carbon emission and analysis of influencing factors[J]. Energy Efficiency, 2021, 14(8): 84. doi: 10.1007/s12053-021-10001-0.
[16] Deutch John. Decoupling economic growth and carbon emissions[J]. Joule, 2017, 1(1): 3-5.
[17] Khan Khalid, Su Chiwei. Urbanization and carbon emissions: A panel threshold analysis[J]. Environmental Science and Pollution Research, 2021, 28(20): 26073-26081.
[18] Wang Keying, Wu Meng, Sun Yongping, et al. Resource abundance, industrial structure, and regional carbon emissions efficiency in China[J]. Resources Policy, 2019, 60: 203-214.
[19] 范志欣, 方修琦, 苏筠. 全球碳排放格网化格局的变化[J]. 气候变化研究进展, 2018, 14(5): 505-512.
[19] [Fan Zhixin, Fang Xiuqi, Su Yun. Changes in global grid pattern of carbon emissions[J]. Climate Change Research, 2018, 14(5): 505-512. ]
[20] Cai Bofeng, Wang Xiuquan, Huang Guohe, et al. Spatiotemporal changes of China’s carbon emissions[J]. Geophysical Research Letters, 2018, 45(16): 8536-8546.
[21] Chen Jiandong, Gao Ming, Cheng Shulei, et al. County-level CO2 emissions and sequestration in China during 1997-2017[J]. Scientific Data, 2020, 7(1): 391. doi: 10.1038/s41597-020-00736-3.
[22] Chen Qianli, Cai Bofeng, Dhakal Shobhakar, et al. CO2 emission data for Chinese cities[J]. Resources, Conservation and Recycling, 2017, 126: 198-208.
[23] Chen Yi, Wang Xinyu, Sha Zhijie, et al. Uncertainty analysis for multi-state weighted behaviours of rural area with carbon dioxide emission estimation[J]. Applied Soft Computing, 2012, 12(8): 2631-2637.
[24] Song Dan, Su Meirong, Yang Jin, et al. Greenhouse gas emission accounting and management of low-carbon community[J]. Scientific World Journal, 2012, 2012: 613721. doi: 10.1100/2012/613721.
[25] Zhang Zengkai, Guan Dabo, Wang Ran, et al. Embodied carbon emissions in the supply chains of multinational enterprises[J]. Nature Climate Change, 2020, 10(12): 1096-1101.
[26] Chandio Abbas Ali, Akram Waqar, Ahmad Fayyaz, et al. Dynamic relationship among agriculture-energy-forestry and carbon dioxide (CO2) emissions: Empirical evidence from China[J]. Environmental Science and Pollution Research, 2020, 27 (27): 34078-34089.
[27] Cheng YungHsiang, Chang YuHern, Lu I J. Urban transportation energy and carbon dioxide emission reduction strategies[J]. Applied Energy, 2015, 157: 953-973.
[28] 李雪梅, 张庆. 天津市能源消费碳排放影响因素及其情景预测[J]. 干旱区研究, 2019, 36(4): 997-1004.
[28] [Li Xuemei, Zhang Qing. Factors affecting carbon emission from energy consumption in Tianjin[J]. Arid Zone Research, 2019, 36(4): 997-1004. ]
[29] Huang Lizhen, Krigsvoll Guri, Johansen Fred, et al. Carbon emission of global construction sector[J]. Renewable & Sustainable Energy Reviews, 2018, 81: 1906-1916.
[30] Lenzen Manfred, Sun Yayen, Faturay Futu, et al. The carbon footprint of global tourism[J]. Nature Climate Change, 2018, 8(6): 522-528.
[31] Prastiyo Slamet Eko, Irham, Hardyastuti Suhatmini, et al. How agriculture, manufacture, and urbanization induced carbon emission? The case of Indonesia[J]. Environmental Science and Pollution Research, 2020, 27(33): 42092-42103.
[32] Yang Lisha, Lin Boqiang. Carbon dioxide-emission in China’s power industry: Evidence and policy implications[J]. Renewable & Sustainable Energy Reviews, 2016, 60: 258-267.
[33] Chu Yingmin, Xie Luyue, Yuan Zaijian. Composition and spatiotemporal distribution of the agro-ecosystem carbon footprint: A case study in Hebei Province, North China[J]. Journal of Cleaner Production, 2018, 190: 838-846.
[34] 刘竹, 关大博, 魏伟. 中国二氧化碳排放数据核算[J]. 中国科学: 地球科学, 2018, 48(7): 878-887.
[34] [Liu Zhu, Guan Dabo, Wei Wei. Carbon emission accounting in China[J]. Scientia Sinica Terrae, 2018, 48(7): 878-887. ]
[35] Pei Jie, Niu Zheng, Wang Li, et al. Spatial-temporal dynamics of carbon emissions and carbon sinks in economically developed areas of China: A case study of Guangdong Province[J]. Scientific Reports, 2018, 8(1): 13383. doi: 10.1038/s41598-018-31733-7.
[36] Shan Yuli, Guan Dabo, Zheng Heran, et al. Data descriptor: China CO2 emission accounts 1997-2015[J]. Scientific Data, 2018, 5: 170201. doi: 10.1038/sdata.2017.201.
[37] Wei Wendong, Wang Xibo, Zhu He, et al. Carbon emissions of urban power grid in Jing-Jin-Ji region: Characteristics and influential factors[J]. Journal of Cleaner Production, 2017, 168: 428-440.
[38] Cai Bofeng, Guo Huanxiu, Ma Zipeng, et al. Benchmarking carbon emissions efficiency in Chinese cities: A comparative study based on high-resolution gridded data[J]. Applied Energy, 2019, 242: 994-1009.
[39] Mi Zhifu, Guan Dabo, Liu Zhu, et al. Cities: The core of climate change mitigation[J]. Journal of Cleaner Production, 2019, 207: 582-589.
[40] Mi Zhifu, Zheng Jiali, Meng Jing, etal. Carbon emissions of cities from a consumption-based perspective[J]. Applied Energy, 2019, 235: 509-518.
[41] Shao Ling, Guan Dabo, Zhang Ning, et al. Carbon emissions from fossil fuel consumption of Beijing in 2012[J]. Environmental Research Letters, 2016, 11(11): 114028. doi: 10.1088/1748-9326/11/11/114028.
[42] 王少剑, 谢紫寒, 王泽宏. 中国县域碳排放的时空演变及影响因素[J]. 地理学报, 2021, 76(12): 3103-3118.
[42] [Wang Shaojian, Xie Zihan, Wang Zehong. The spatiotemporal pattern evolution and influencing factors of CO2 emissions at the county level of China[J]. Acta Geographica Sinica, 2021, 76(12): 3103-3118. ]
[43] 刘华军, 邵明吉, 吉元梦. 中国碳排放的空间格局及分布动态演进——基于县域碳排放数据的实证研究[J]. 地理科学, 2021, 41(11): 1917-1924.
[43] [Liu Huajun, Shao Mingji, Ji Yuanmeng. The spatial pattern and distribution dynamic evolution of carbon emissions in China: Empirical study based on county carbon emission data[J]. Scientia Geographica Sinica, 2021, 41(11): 1917-1924. ]
[44] 莫惠斌, 王少剑. 黄河流域县域碳排放的时空格局演变及空间效应机制[J]. 地理科学, 2021, 41(8): 1324-1335.
[44] [Mo Huibin, Wang Shaojian. Spatio-temporal evolution and spatial effect mechanism of carbon emission at county level in the Yellow River Basin[J]. Scientia Geographica Sinica, 2021, 41(8): 1324-1335. ]
[45] 胡孟然. 中国县域碳排放空间格局及影响因素研究[D]. 兰州: 兰州大学, 2021.
[45] [Hu Mengran. Spatial Pattern and Influencing Factors of Carbon Emissions at County Level in China[D]. Lanzhou: Lanzhou University, 2021. ]
[46] 刘畅, 苏筠, 黎玲玲. 中国县域能源消费碳排放估算及其空间分布[J]. 环境污染与防治, 2020, 42(1): 113-119.
[46] [Liu Chang, Su Yun, Li Lingling. The estimation and spatial distribution of the carbon emissions of county units in China[J]. Environmental Pollution and Control, 2020, 42(1): 113-119 ]
[47] 汪浩, 陈操操, 潘涛, 等. 县域尺度的京津冀都市圈CO2排放时空演变特征[J]. 环境科学, 2014, 35(1): 385-393.
[47] [Wang Hao, Chen Caocao, Pan Tao, et al. County scale characteristics of CO2emission’s spatial-temporal evolution in the Beijing-Tianjin-Hebei metropolitan region[J]. Environmental Science, 2014, 35(1): 385-393. ]
[48] 朱松丽, 汪航, 王文涛, 等. “十二五”期间中国区域低碳经济与国土空间开发格局的协调发展研究[J]. 中国人口·资源与环境, 2017, 27 (9): 135-142.
[48] [Zhu Songli, Wang Hang, Wang Wentao, et al. Status of coordinated development between regional low-carbon economy and spatial land-use pattern in the 12th Five Year Plan[J]. China Population, Resources and Environment, 2017, 27(9): 135-142 ]
[49] 胡向东, 王济民. 中国畜禽温室气体排放量估算[J]. 农业工程学报, 2010, 26 (10): 247-252.
[49] [Hu Xiangdong, Wang Jimin. Estimation of livestock greenhouse gases discharge in China[J]. Transactions of the CSAE, 2010, 26(10): 247-252. ]
[50] 刘培芳, 陈振楼, 许世远, 等. 长江三角洲城郊畜禽粪便的污染负荷及其防治对策[J]. 长江流域资源与环境, 2002, 11(5): 456-460.
[50] [Liu Peifang, Chen Zhenlou, Xu Shiyuan, et al. Waste loading and treatment strategies on the excreta of domestic animals in the Yangtze Delta[J]. Resources and Environment in the Yangtze Basin, 2002, 11(5): 456-460. ]
[51] 宋奇, 史舟, 冯春晖, 等. 基于1990—2019年多时相影像的干旱区绿洲景观格局分析[J]. 干旱区研究, 2022, 39(2): 594-604.
[51] [Song Qi, Shi Zhou, Feng Chunhui, et al. Analysis of landscape pattern from 1990 to 2019 based on multi-temporal imagery in arid oasis[J]. Arid Zone Research, 2022, 39(2): 594-604. ]
[52] 郭杰, 丁冠乔, 刘晓曼, 等. 城镇景观格局对区域碳排放影响及其差别化管控研究[J]. 中国人口·资源与环境, 2018, 28(10): 55-61.
[52] [Guo Jie, Ding Guanqiao, Liu Xiaoman, et al. Effect of urban landscape pattern on regional carbon emissions and its differential regulation[J]. China Population, Resources and Environment, 2018, 28(10): 55-61. ]
[53] 朱东国, 谢炳庚, 熊鹏. 基于三维景观格局指数的张家界市土地利用格局时空演化[J]. 经济地理, 2017, 37(8): 168-175.
[53] [Zhu Dongguo, Xie Binggeng, Xiong Peng. Spatial-temporal evolution of land-use pattern changes in Zhangjiajie city based on three-dimensional landscape pattern indices[J]. Economic Geography, 2017, 37(8): 168-175. ]
[54] 付扬军, 师学义, 和娟. 汾河流域景观破碎化时空演变特征[J]. 自然资源学报, 2019, 34(8): 1606-1619.
[54] [Fu Yangjun, Shi Xueyi, He Juan. The spatio-temporal evolution characteristics of landscape fragmentation in Fenhe River Basin[J]. Journal of Natural Resources, 2019, 34(8): 1606-1619. ]
[55] 张皓玮, 李欣, 殷如梦, 等. 旅游城镇化地区土地利用景观格局指数的粒度效应——以扬州市广陵区为例[J]. 南京师大学报 (自然科学版), 2018, 41(3): 122-130.
[55] [Zhang Haowei, Li Xin, Yin Rumeng, et al. Grain size effect of urbanization tourist areas of land use landscape pattern index: A case study of Guangling district of Yangzhou[J]. Journal of Nanjing Normal University (Natural Science Edition), 2018, 41(3): 122-130. ]
[56] 马振刚, 李黎黎, 许学工, 等. 北方农牧交错带地区土地利用的粒度效应研究——以化德县为例[J]. 干旱区资源与环境, 2016, 30(5): 92-98.
[56] [Ma Zhengang, Li Lili, Xu Xuegong, et al. Grain size effects of land-use in farming-pastoral transitional zone of northern China: A case study of Huade county[J]. Journal of Arid Land Resources and Environment, 2016, 30(5): 92-98. ]
[57] 寇星亮. 长庆油田机关搬迁事件的社会学分析[D]. 兰州: 兰州大学, 2013.
[57] [Kou Xingliang. A Sociological Analysis on the Event of Changqiong Oilfield Unites’ Relocation[D]. Lanzhou: Lanzhou University, 2013. ]
[58] 张子龙, 王博, 龙志, 等. 财政分权、产业升级、技术进步与“资源诅咒”——基于黄河流域资源型城市的实证分析[J]. 经济经纬, 2021, 38(3): 133-141.
[58] [Zhang Zilong, Wang Bo, Long Zhi, et al. Fiscal decentralization, industrial upgrading, technological progress and “resource curse”: Empirical analysis of resource-based cities in the Yellow River Basin[J]. Economic Survey, 2021, 38(3): 133-141. ]
Outlines

/