Effects of nickel, copper, and arsenic pollution on soil microorganism and enzyme activities
Received date: 2022-03-17
Revised date: 2022-06-23
Online published: 2022-10-25
Microorganism and enzyme activities in the soil are important biological indicators of soil quality. Farmland soil polluted by heavy metal in Ningyuanbu Town of the Jinchuan District in Gansu Province was the object of this study. To analyze the content of heavy metals (Zn, Pb, Cd, Cr, Cu, Ni, As, Hg), microorganisms (bacteria, fungi, actinomycetes), and enzyme activity (urease, alkaline phosphatase, catalase, dehydrogenase), 26 samples in soil layers of 0-20 cm and 20-40 cm were collected. The results showed that the over-standard rates of Ni, Cu, and As in the soil layer of 0-20 cm were 15.4%, 30.8%, and 38.5%, respectively. The over-standard rates of Ni, Cu, and As in the soil layer of 20-40 cm were 7.7%. There was a negative correlation between Pb, Hg, Ni, Cu, Cd, and As, along with bacteria, urease, alkaline phosphatase, catalase, and dehydrogenase. Cr showed a positive correlation with fungi and actinomycetes. Zn showed a positive correlation with bacteria. Pb, Zn, and Cr were the major factors that dominated soil biological traits, and the contribution rate was 72.4%, 16.2%, and 4.9%, respectively. Catalase activity was sensitive to nickel, copper, cadmium, and arsenic pollution, which can be used as an effective index for the evaluation of soil quality in these areas.
Key words: nickel, copper and arsenic pollution; soil; microorganism; enzyme activity
GUO Quanen,CAO Shiyu,NAN Lili,ZHAN Zongbing,WANG Zhuo,WANG Kun,LI Jingfeng . Effects of nickel, copper, and arsenic pollution on soil microorganism and enzyme activities[J]. Arid Zone Research, 2022 , 39(5) : 1607 -1617 . DOI: 10.13866/j.azr.2022.05.25
[1] | 杨宁, 李东海, 杨小波, 等. 铅锌矿区周边土壤重金属污染及植物富集特征[J]. 热带生物学报, 2021, 12(4): 1-8. |
[1] | [Yang Ning, Li Donghai, Yang Xiaobo, et al. Heavy metal contamination in the soil and enrichment characteristics in the plants around the abandoned lead-zinc mine[J]. Journal of Tropical Biology, 2021, 12(4): 1-8. ] |
[2] | 王若锦, 邵天杰, 卫佩茹. 环青海湖地区表层土壤重金属富集含量及其生态风险评价[J]. 干旱区研究, 2021, 38(2): 411-420. |
[2] | [Wang Ruojin, Shao Tianjie, Wei Peiru. Enrichment content and ecological risk assessment of heavy metal in surface soil around Qinghai Lake[J]. Arid Zone Research, 2021, 38(2): 411-420. ] |
[3] | Wei L, Wang K, Noguera D R, et al. Transformation and speciation of typical heavy metals in soil aquifer treatment system during long time recharging with secondary effluent: Depth distribution and combination[J]. Chemosphere, 2016, 165: 100-109. |
[4] | Guo Q E, Cao S Y, Nan L L, et al. Distribution characteristics and ecological risk assessment of heavy metals in typical farmland soils from Baijiazui Village of Ningyuanbu Town, China[J]. Polish Journal of Environmental Studies, 2022, 31(4): 3551-3560. |
[5] | 黄璜, 南忠仁, 胡小娜, 等. 金昌市城区土壤重金属空间分布及潜在生态危害评价[J]. 环境监测管理与技术, 2009, 21(5): 30-34. |
[5] | [Nan Zhongren, Hu Xiao’na, et al. Spatial distributions of heavy metals and assessment of potential ecological risk in Jinchang urban area[J]. Environmental Monitoring Management and Technology, 2009, 21(5): 30-34. ] |
[6] | 丁海霞, 南忠仁, 刘晓文, 等. 金昌市郊农田土壤重金属的污染特征[J]. 农业环境科学学报, 2008, 27(6): 2183-2188. |
[6] | [Ding Haixia, Nan Zhongren, Liu Xiaowen, et al. Characteristics of selected heavy metal pollution in suburb cropland, Jinchang City, Gansu, China[J]. Journal of Agro-Environment Science, 2008, 27(6): 2183-2188. ] |
[7] | 李媛, 南忠仁, 刘晓文, 等. 金昌市市郊农田土壤-小麦系统Cu、Zn、Ni 行为特性[J]. 西北农业学报, 2008, 17(6): 298-302. |
[7] | [Li Yuan, Nan Zhongren, Liu Xiaowen, et al. Behavior of heavy metals (Cu, Zn, Ni) in soil-wheat system of the suburb in Jinchang[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2008, 17(6): 298-302. ] |
[8] | 廖晓勇, 陈同斌, 武斌, 等. 典型矿业城市的土壤重金属分布特征与复合污染评价——以 “镍都” 金昌市为例[J]. 地理研究, 2006, 25(5): 843-852. |
[8] | [Liao Xiaoyong, Chen Tongbin, Wu Bin, et al. Mining urban soil pollution: Concentrations and patterns of heavy metals in the soils of Jinchang, China[J]. Geographical Research, 2006, 25(5): 843-852. ] |
[9] | 徐琪, 龚甲桂, 赵胜军, 等. 金昌市金川区土壤重金属累积分析及污染评价[J]. 干旱区资源与环境, 2019, 33(11): 150-155. |
[9] | [Xu Qi, Gong Jiagui, Zhao Shenjun, et al. Heavy metal accumulation and pollution evaluation in Jinchuan district, Jinchang City[J]. Journal of Arid Land Resources and Environment, 2019, 33(11): 150-155. ] |
[10] | Cheng L, Zhang N F, Yuan M T, et al. Warming enhances old organic carbon decomposition through altering functional microbial communities[J]. The ISME Journal, 2017, 11(8): 1825-1835. |
[11] | 林先贵, 胡君利. 土壤微生物多样性的科学内涵及其生态服务功能[J]. 土壤学报, 2008, 45(5): 892-900. |
[11] | [Lin Xiangui, Hu Junli. Scientific connotation and ecological service function[J]. Acta Pedologica Sinica, 2008, 45(5): 892-900. ] |
[12] | Xiao L, Liu G B, Li P, et al. Ecoenzymatic stoichiometry and microbial nutrient limitation during secondary succession of natural grassland on the Loess Plateau, China[J]. Soil and Tillage Research, 2020, 200: doi: 10.1016/j.still.2020.104605. |
[13] | Guo Q E, Nan L L, Cao S Y. Evaluation of soil enzyme activities as soil biological activity indicators in desert-oasis transition zone soils in China[J]. Arid Land Research and Management, 2021, 35(2): 162-176. |
[14] | Zhang J Y, Ai Z, Liang C, et al. How microbes cope with short-term N addition in a Pinus tabuliformis forest-ecological stoichiometry[J]. Geoderma, 2019, 337: 630-640. |
[15] | Bell C, Carrillo Y, Boot C M, et al. Rhizosphere stoichiometry: are C: N: P ratios of plants, soils, and enzymes conserved at the plant species-level[J]. New Phytologist, 2013, 201(2): 505-517. |
[16] | 朱永官, 彭静静, 韦中, 等. 土壤微生物组与土壤健康[J]. 中国科学: 生命科学, 2021, 51(1): 1-11. |
[16] | [Zhu Yongguan, Pen Jingjing, Wei Zhong, et al. Linking the soil microbiome to soil health[J]. Scientia Sinica Vitae, 2021, 51(1): 1-11. ] |
[17] | 贺玉晓, 赵同谦, 刘刚才, 等. 采煤沉陷区土壤重金属含量对土壤酶活性的影响[J]. 水土保持学报, 2012, 26(1): 214-218. |
[17] | [He Yuxiao, Zhao Tongqian, Liu Gangcai, et al. Influence of heavy metal contents on the activities of soil enzyme in coalmining subsided area[J]. Journal of Soil and Water Conservation, 2012, 26(1): 214-218. ] |
[18] | 张涪平, 曹凑贵, 李苹, 等. 藏中矿区重金属污染对土壤微生物学特性的影响[J]. 农业环境科学学报, 2010, 29(4): 698-704. |
[18] | [Zhang Fuping, Cao Zougui, Li Ping, et al. Effects of heavy metal pollution on microbial characteristics of mine soils in central Tibet[J]. Journal of Agro-Environment Science, 2010, 29(4): 698-704. ] |
[19] | 闫文德, 田大伦. 湘潭锰矿废弃地土壤酶活性与重金属含量的关系[J]. 中南林学院学报, 2006, 26(3): 1-4. |
[19] | [Yan Wende, Tian Dalun. Relationship between enzyme activities and heavy metal contents in soils of deserted land in Xiangtan manganese mine[J]. Journal of Central South Forestry University, 2006, 26(3): 1-4. ] |
[20] | 杨丽原, 沈吉, 张祖陆, 等. 南四湖表层底泥重金属污染及其风险性评价[J]. 湖泊科学, 2003, 15(3): 252-256. |
[20] | [Yang Liyuan, Shen Ji, Zhang Zulu, et al. Distribution and ecological risk assessment for heavy metals in superficial sediments of Nansihu Lake[J]. Journal of Lake Sciences, 2003, 15(3): 252-256. ] |
[21] | 关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1987. |
[21] | [Guan Songmeng. Soil Enzyme and Its Research Method[M]. Beijing: Agricultural Press, 1987. ] |
[22] | 杨兰芳, 曾巧, 李海波, 等. 紫外分光光度法测定土壤过氧化氢酶活性[J]. 土壤通报, 2011, 42(1): 207-210. |
[22] | [Yang Lanfang, Zeng Qiao, Li Haibo, et al. Measurement of catalase activity in soil by ultraviolet spectrophotometry[J]. Chinese Journal of Soil Science, 2011, 42(1): 207-210. ] |
[23] | 许光辉, 郑洪元. 土壤微生物分析方法手册[M]. 北京: 农业出版社, 1986: 91-110. |
[23] | [Xu Guanghui, Zheng Hongyuan. Handbook of Soil Microbial Analysis Methods[M]. Beijing: Agricultural Press, 1986: 91-110. ] |
[24] | 中国科学院南京土壤研究所微生物室. 土壤微生物研究法[M]. 北京: 科学出版社, 1985: 240-273. |
[24] | [Laboratory of Microbiology, Institute of Soil, Chinese Academy of Sciences. Soil Microbial Research Method[M]. Beijing: Science Press, 1985: 240-273. ] |
[25] | 南丽丽, 师尚礼, 郁继华. 荒漠灌区不同种植年限苜蓿草地土壤微生物特性[J]. 草地学报, 2016, 24(5): 975-980. |
[25] | [Nan Lili, Shi Shangli, Yu Jihua. Soil microbial properties in Alfalfa field with different growing years in arid desert oasis[J]. Acta Agrestia Sinica, 2016, 24(5): 975-980. ] |
[26] | GB15618-2018, 中华人民共和国国家标准: 土壤环境质量农用地土壤污染风险管控标准(试行) [S]. 北京: 中国环境科学出版社, 2018. |
[26] | [GB15618-2018, National Standard of the People’s Republic of China: Soil Environmental Quality Standard for Soil Pollution Risk Control of Agricultural Land (Trial)[S]. Beijing: China Environmental Science Press, 2018. ] |
[27] | 刘娟, 张乃明, 于泓, 等. 重金属污染对水稻土微生物及酶活性影响研究进展[J]. 土壤, 2021, 53(6): 1152-1159. |
[27] | [Liu Juan, Zhang Naiming, Yu Hong, et al. Effects of heavy metal pollution on microorganism and enzyme activity in paddy soil: A review[J]. Soils, 2021, 53(6): 1152-1159. ] |
[28] | Burns R G, DeForest J L, Marxsen J, et al. Soil enzymes in a changing environment: Current knowledge and future directions[J]. Soil Biology and Biochemistry, 2013, 58: 216-234. |
[29] | 孙波, 赵其国, 张桃林, 等. 土壤质量与持续环境——Ⅲ. 土壤质量评价的生物学指标[J]. 土壤, 1997, 29(5): 225-234. |
[29] | [Sun Bo, Zhao Qiguo, Zhang Taolin, et al. Soil quality and sustainable environment——Ⅲ. Biological indexes of soil quality evaluation[J]. Soils, 1997, 29(5): 225-234. ] |
[30] | 王秀丽, 徐建民, 姚槐应, 等. 重金属铜、锌、镉、铅复合污染对土壤环境微生物群落的影响[J]. 环境科学学报, 2003, 23(1): 22-27. |
[30] | [Wang Xiuli, Xu Jianming, Yao Huaiying, et al. Effects of Cu, Zn, Cd and Pb compound contamination on soil microbial community[J]. Acta Scientiae Circumstantiae, 2003, 23(1): 22-27. ] |
[31] | Gao Y, Zhou P, Mao L, et al. Assessment of effects of heavy metals combined pollution on soil enzyme activities and microbial community structure: Modified ecological dose-response model and PCR-RAPD[J]. Environmental Earth Science, 2010, 60(3): 603 -612. |
[32] | 吴春艳, 陈义, 闵航, 等. Cd2+和Cu2+对水稻土微生物及酶活性的影响[J]. 浙江农业科学, 2006, 47(3): 303-307. |
[32] | [Wu Chunyan, Chen Yi, Min Hang, et al. Effects of Cd2+and Cu2+ on paddy soil microbial biomass and enzyme activities[J]. Zhejiang Agricultural Science, 2006, 47(3): 303-307. ] |
[33] | Pan J, Yu L. Effects of Cd or/and Pb on soil enzyme activities and microbial community structure[J]. Ecological Engineering, 2011, 37(11): 1889-1894. |
[34] | Zhang C, Nie S, Liang J, et al. Effects of heavy metals and soil physicochemical properties on wetland soil microbial biomass and bacterial community structure[J]. Science of the Total Environment, 2016, 557: 785-790. |
[35] | Morton-Bermea O, Hernández-Álvarez E, González-Hernández G, et al. Assessment of heavy metal pollution in urban topsoils from the metropolitan area of Mexico City[J]. Journal of Geochemical Exploration, 2009, 101(3): 218-224. |
[36] | 陈任连, 蔡茜茜, 周丽华, 等. 甘肃某冶炼厂区土壤重金属铅、镉污染特征及其对微生物群落结构的影响[J]. 生态环境学报, 2021, 30(3): 596-603. |
[36] | [Chen Renlian, Cai Xixi, Zhou Lihua, et al. Characteristics of soil contamination with heavy metals (Pb and Cd ) in a smelting plant of Gansu and their effects on microbial community structure[J]. Ecology and Environmental Sciences, 2021, 30(3): 596-603. ] |
[37] | Aponte H N, Medina J, Butler B, et al. Soil quality indices for metal (loid) contamination: An enzymatic perspective[J]. Land Degradation & Development, 2020, 31(17): 2700-2719. |
[38] | 周启星, 王美娥. 土壤生态毒理学研究进展与展望[J]. 生态毒理学报, 2006, 1(1): 1-11. |
[38] | [Zhou Qixing, Wang Mei’e. Researching advancement and prospect of soil ecotoxicology[J]. Asian Journal of Ecotoxicology, 2006, 1(1): 1-11. ] |
[39] | Tian H X, Kong L, Megharaj M, et al. Contribution of attendant anions on cadmium toxicity to soil enzymes[J]. Chemosphere, 2017, 187: 19-26. |
[40] | Fan D W, Wang S Y, Guo Y H, et al. The role of bacterial communities in shaping Cd-induced hormesis in ‘living’ soil as a function of land-use change[J]. Journal of Hazardous Materials, 2021, 409, doi: 10.1016/j.jhazmat.2020.124996. |
[41] | 谭向平, 何金红, 郭志明, 等. 土壤酶对重金属污染的响应及指示研究进展[J/OL]. 土壤学报, 2022, https://kns.cnki.net/kcms/detail/32.1119.P.20211126.1624.010.html. |
[41] | [Tan Xiangping, He Jinghong, Guo Zhiming, et al. Research progresses on soil enzymes as indicators of soil health and their responses to heavy metal pollution[J/OL]. Acta Pedologica Sinica, https://kns.cnki.net/kcms/detail/32.1119.P.20211126.1624.010.html. ] |
[42] | Gerhard W, Gerhard W B. Microbial toxicity of Cd and Hg in different soils related to total and water-soluble contents[J]. Ecotoxicology and Environmental Safety, 1997, 38(3): 200-204. |
[43] | Tan X P, Kong L, Yan H R, et al. Influence of soil factors on the soil enzyme inhibition by Cd[J]. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 2014, 64(8): 666-674. |
[44] | 和文祥, 朱铭莪, 张一平. 土壤酶与重金属关系的研究现状[J]. 土壤与环境, 2000, 9(2): 139-142. |
[44] | [He Wenxiang, Zhu Ming’e, Zhang Yiping. Research status of the relationship between soil enzymes and heavy metals[J]. Soil and Environment, 2000, 9(2): 139-142. ] |
[45] | 朱铭莪. 土壤酶动力学及力学[M]. 北京: 科学出版社, 2011. |
[45] | [Zhu Ming’e. Soil Enzyme Kinetics and Mechanics[M]. Beijing: Science Press, 2011 ] |
[46] | Megharaj K V, Naidu N S. Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: A review[J]. Advances in Environmental Research, 2003, 8(1): 121-135. |
[47] | 王盼盼, 郭海峰, 许江环, 等. 湛江沿海盐渍田土壤-稻米系统重金属含量与土壤酶活性的特征及其相关分析[J]. 生态环境学报, 2021, 30(4): 857-865. |
[47] | [Wang Panpan, Guo Haifeng, Xu Jianghuan, et al. Characteristics and correlation analysis of heavy metal content and soil enzyme activity in soil-rice system of Zhanjiang coastal salinized farmland[J]. Ecology and Environmental Sciences, 2021, 30(4): 857-865. ] |
/
〈 | 〉 |