Land and Water Resources

Analysis of runoff variation and forecast in the upper reaches of the Shule River

Expand
  • 1. College of Water Resources and Hydropower Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    2. Jiuquan Hydrological Station of Gansu Province, Jiayuguan 735100, Gansu, China

Received date: 2022-01-26

  Revised date: 2022-06-14

  Online published: 2022-10-25

Abstract

A quantitative analysis of runoff variation characteristics is the basis for finding out its impact mechanism, and it is also an important basis for accurately evaluating water resources. This study used eight annual distribution indexes, such as the Gini coefficient and Lorentz asymmetry coefficient, combined with the M-K test、R/S analysis, and other mathematical statistics methods, to comprehensively analyze the process of the runoff of the upper reaches of the Shule River from the annual and interannual levels. The results showed that the following: (1) during the year, a unimodal distribution was shown, which was mainly concentrated in the flood season concentration degree (D), inhomogeneous coefficient (Cv), Gini coefficient (GI), relative change range (Cm) decreased respectively at the rate of -1.053·(10a)-1, -0.015·(10a)-1, -0.009·(10a)-1,-0.643·(10a)-1, complete adjustment coefficient (Cr), Lorentz asymmetry coefficient (S), concentration period (Cn) all decreased at the rate of -0.006·(10a)-1. The distribution tended to be uniform gradually according to the changing trend of its characteristic index during the year. (2) The annual runoff showed an overall increasing trend, but an abrupt change occurred in 1997, and the average annual runoff afterward increased by 59% compared before the change. (3) The runoff generally showed an upward trend in all four seasons, among which the trend rate was the greatest in the summer and the smallest in the winter. After the abrupt change in the 1990s, the average runoff increased significantly compared to before the abrupt change, and the change range was in the following order: autumn (76%) > winter (74%) > summer (58%) > spring (45%). (4) The annual and seasonal runoff in the upper reaches of the Shule River had multiple time characteristic scale periods, and the first major cycle were both 56 years. (5) According to the predicted runoff from 2022 to 2024, it was found that the runoff of the upper reaches of the Shule River will continue to increase in the next three years. These results provided a scientific basis for accurately grasping the runoff variation laws and characteristics of the upper reaches of the Shule River and had certain guiding significance for the sustainable development and utilization of water resources in the Shule River Basin and the study of the runoff variation laws in inland river basins.

Cite this article

JIA Ling,ZHANG Baizu,NIU Zuirong,SUN Dongyuan,SUN Kaiyue,WNAG Lujun . Analysis of runoff variation and forecast in the upper reaches of the Shule River[J]. Arid Zone Research, 2022 , 39(5) : 1588 -1597 . DOI: 10.13866/j.azr.2022.05.23

References

[1] 孙从建, 陈伟, 王诗语. 气候变化下的塔里木盆地西南部内陆河流域径流组分特征分析[J]. 干旱区研究, 2022, 39(1): 113-122.
[1] [Sun Congjian, Chen Wei, Wang Shiyu. Stream component characteristics of the inland river basin of the Tarim Basin under regional climate change[J]. Arid Zone Research, 2022, 39(1): 113-122. ]
[2] 杨盼, 梁伟, 严建武, 等. 黄河流域多尺度水系统结构变化特征[J]. 中国沙漠, 2021, 41(6): 223-234.
[2] [Yang Pan, Liang Wei, Yan Jianwu, et al. Multi-scale analysis of water system structure changes in the Yellow River Basin[J]. Journal of Desert Research, 2021, 14(6): 223-234. ]
[3] 牛最荣, 赵文智, 刘进琪, 等. 甘肃渭河流域气温、降水和径流变化特征及趋势研究[J]. 水文, 2012, 32(2): 78-83, 87.
[3] [Niu Zuirong, Zhao Wenzhi, Liu Jinqi, et al. Study on change characteristics and tendency of temperature, precipitation and runoff in Weihe River Basin in Gansu[J]. Journal of China Hydrology, 2012, 32(2): 78-83, 87. ]
[4] 孙甲岚, 雷晓辉, 蒋云钟, 等. 长江流域上游气温、降水及径流变化趋势分析[J]. 水电能源科学, 2012, 30(5): 1-4.
[4] [Sun Jialan, Lei Xiaohui, Jiang Yunzhong, et al. Variation trend analysis of meteorological variables and runoff in upper reaches of Yangtze River[J]. Water Resources and Power, 2012, 30(5): 1-4. ]
[5] Pan B, Han M, Wei F, et al. Analysis of the variation characteristics of runoff and sediment in the Yellow River within 70 years[J]. Water Resources, 2021, 48(5): 676-689.
[6] 邢贞相, 刘美鑫, 付强, 等. 挠力河流域径流变化特征与影响因素分析[J]. 农业机械学报, 2015, 46(9): 178-187.
[6] [Xing Zhenxiang, Liu Meixin, Fu Qiang, et al. Analysis of runoff vriation and impacting factors in Naoli River Basin[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(9): 178-187. ]
[7] 刘志斌, 黄粤, 刘铁, 等. 开都河源区径流变化的气候响应[J]. 干旱区研究, 2020, 37(2): 418-427.
[7] [Liu Zhibin, Huang Yue, Liu Tie, et al. Climate response of runoff variation in the source area of the Kaidu River[J]. Arid Zone Research, 2020, 37(2): 418-427. ]
[8] 刘爽爽, 李忠勤, 张慧, 等. 天山典型冰川区径流年内变化分析[J]. 干旱区研究, 2020, 37(6): 1388-1395.
[8] [Liu Shuangshuang, Li Zhongqin, Zhang Hui, et al. Temporal inner-annual runoff variation in the variation in the typical glacier region of the eastern Tianshan Mountains, China[J]. Arid Zone Research, 2020, 37(6): 1388-1395. ]
[9] 王玉洁, 秦大河. 气候变化及人类活动对西北干旱区水资源影响研究综述[J]. 气候变化研究进展, 2017, 13(5): 483-493.
[9] [Wang Yujie, Qin Dahe. Influence of climate change and human activity on water resources in arid region of Northwest China: An Overview[J]. Climate Change Research, 2017, 13(5): 483-493. ]
[10] 陈亚宁, 李稚, 范煜婷, 等. 西北干旱区气候变化对水文水资源影响研究进展[J]. 地理学报, 2014, 69(9): 1295-1304.
[10] [Chen Yaning, Li Zhi, Fan Yuting, et al. Research progress on the impact of climate change on water resources in the arid region of Northwest China[J]. Acta Geographica Sinica, 2014, 69(9): 1295-1304. ]
[11] 涂新军, 陈晓宏, 张丽娟, 等. 时段长取值变化下的径流年内分配特征研究[J]. 生态环境学报, 2011, 20(1): 119-123.
[11] [Tu Xinjun, Chen Xiaohong, Zhang Lijuan, et al. Annual distribution of streamflow with different identifications of time intervals[J]. Ecology and Environmental Sciences, 2011, 20(1): 119-123. ]
[12] 刘永婷, 徐光来, 李鹏, 等. 淮河上游径流年内分配均匀度及变化规律[J]. 水土保持研究, 2017, 24(5): 99-104.
[12] [Liu Yongting, Xu Guanglai, Li Peng, et al. Study on runoff uniformity and variation in the upper reaches of Huaihe River Basin[J]. Research of Soil and Water Conservation, 2017, 24(5): 99-104. ]
[13] 陈贤光, 王龙, 张玉龙. 龙川江径流年内分配及变化趋势研究[J]. 云南农业大学学报(自然科学版), 2011, 26(5): 712-716.
[13] [Chen Xianguang, Wang Long, Zhang Yulong. Study on change trend of annual runoff distribution in Longchuan River[J]. Journal of Yunnan Agricultural University(Natural Science Edition), 2011, 26(5): 712-716. ]
[14] 周秀平, 黄伟军, 王文圣. 桂江流域径流变化特性分析[J]. 广西水利水电, 2008, 37(1): 22-25, 39.
[14] [Zhou Xiuping, Huang Weijun, Wang Wensheng. Runoff variation characteristics analysis for Guijiang River Basin[J]. Guangxi Water Resources & Hydropower Engineering, 2008, 37(1): 22-25, 39. ]
[15] 郑红星, 刘昌明. 黄河源区径流年内分配变化规律分析[J]. 地理科学进展, 2003, 22(6): 585-590, 649.
[15] [Zheng Hongxing, Liu Changming. Changes of annual runoff distribution in the headwater of the Yellow River Basin[J]. Progress in Geography, 2003, 22(6): 585-590, 649. ]
[16] 李洪源, 赵求东, 吴锦奎, 等. 疏勒河上游径流组分及其变化特征定量模拟[J]. 冰川冻土, 2019, 41(4): 907-917.
[16] [Li Hongyuan, Zhao Qiudong, Wu Jinkui, et al. Quantitative simulation of the runoff components and its variation characteristics in the upstream of the Shule River[J]. Journal of Glaciology and Geocryology, 2019, 41(4): 907-917. ]
[17] 杨春利, 蓝永超, 王宁练, 等. 1958—2015年疏勒河上游出山径流变化及其气候因素分析[J]. 地理科学, 2017, 37(12): 1894-1899.
[17] [Yang Chunli, Lan Yongchao, Wang Ninglian, et al. Mountainous runoff changes and climate factors analysis of the Shule River Basin in 1958-2015[J]. Scientia Geographica Sinica, 2017, 37(12): 1894-1899. ]
[18] 张文春. 疏勒河干流中上游径流量变化趋势研究[J]. 地下水, 2019, 41(2): 155-156, 211.
[18] [Zhang Wenchun. Study on the change trend of runoff in the middle and upper reaches of the main stream of Shule River[J]. Ground Water, 2019, 41(2): 155-156, 211. ]
[19] 张晓晓, 张钰, 徐浩杰. 疏勒河上游径流年内分配变化规律分析[J]. 人民黄河, 2014, 36(6): 58-60.
[19] [Zhang Xiaoxiao, Zhang Yu, Xu Haojie. Changes of annual runoff distribution on the upper reaches of the Shule River[J]. Yellow River, 2014, 36(6): 58-60. ]
[20] 蓝永超, 胡兴林, 丁宏伟, 等. 气候变暖背景下祁连山西部山区水循环要素的变化——以疏勒河干流上游山区为例[J]. 山地学报, 2012, 30(6): 675-680.
[20] [Lan Yongchao, Hu Xinglin, Ding Hongwei, et al. Variation of water cycle factors in the western Qilian Mountain Area under climate warming-taking the mountain watershed of the main stream of Shule River Basin for example[J]. Journal of Mountain Science, 2012, 30(6): 675-680. ]
[21] 贾玲, 孙栋元, 牛最荣, 等. 疏勒河流域最高、最低气温变化规律[J]. 水土保持研究, 2022, 29(1): 281-287.
[21] [Jia Ling, Sun Dongyuan, Niu Zuirong, et al. Pattern of maximum and minimum temperature variation in Shule River Basin[J]. Research of Soil and Water Conservation, 2022, 29(1): 281-287. ]
[22] 孙栋元, 齐广平, 马彦麟, 等. 疏勒河干流径流变化特征研究[J]. 干旱区地理, 2020, 43(3): 557-567.
[22] [Sun Dongyuan, Qi Guangping, Ma Yanlin, et al. Variation characteristics of runoff in the mainstream of Shule River[J]. Arid Land Geography, 2020, 43(3): 557-567. ]
[23] 曹振宇. 穆棱河流域上游径流年内分配特性[J]. 水电能源科学, 2019, 37(1): 21-25.
[23] [Cao Zhenyu. Variation regularity of intra-annual runoff distribution in the upstream of the Muling River Basin[J]. Water Resources and Power, 2019, 37(1): 21-25. ]
[24] 张晓晓. 白龙江中上游水文气象要素变化特征分析及径流影响因素研究[D]. 兰州: 兰州大学, 2014.
[24] [Zhang Xiaoxiao. Variation Characteristics Analysis of Hydrometeorology Elements and Affecting Factors of Runoff in the Middle-Upper rReaches of the Bailong River[D]. Lanzhou: Lanzhou University, 2014. ]
[25] 叶正伟, 殷鹏. 淮河流域汛期候尺度降水集中度与集中期的时序变化特征[J]. 水土保持研究, 2018, 25(5): 295-299.
[25] [Ye Zhengwei, Yin Peng. Changes of precipitation concentration degree and precipitation concentration period in flood season in the Huaihe River Basin[J]. Research of Soil and Water Conservation, 2018, 25(5): 295-299. ]
[26] 汤奇成, 程天文, 李秀云. 中国河川月径流的集中度和集中期的初步研究[J]. 地理学报, 1982, 48(4): 383-393.
[26] [Tang Qicheng, Chen Tianwen, Li Xiuyun. Concentration and monthly runoff of Chinese rivers preliminary study during the concentration period[J]. Acta Geographica Sinica, 1982, 48(4): 383-393. ]
[27] 徐万玲, 朱卫红, 张健, 等. 基于洛伦兹曲线的图们江干流区间径流分布不均匀性分析[J]. 水土保持通报, 2015, 35(1): 128-132.
[27] [Xu Wanling, Zhu Weihong, Zhang Jian, et al. Analysis on temporal inhomogenenity of runoff in Tumen River mainstream based on Lorenz Curve[J]. Bulletin of Soil and Water Conservation, 2015, 35(1): 128-132. ]
[28] 胡彩霞, 谢平, 许斌, 等. 基于基尼系数的水文年内分配均匀度变异分析方法——以东江流域龙川站径流序列为例[J]. 水力发电学报, 2012, 31(6): 7-13.
[28] [Hu Caixia, Xie Ping, Xu Bin, et al. Variation analysis method for hydrologic annual distribution homogeneity based on Gini coefficient. A case study of runoff series at Longchun station in Dongjiang River Basin[J]. Journal of Hydroelectric Engineering, 2012, 31(6): 7-13. ]
[29] 侯凯, 林涛, 钱会, 等. 武功地区气候变化特征及趋势预测[J]. 水土保持研究, 2017, 24(4): 252-258.
[29] [Hou Kai, Lin Tao, Qian Hui, et al. Change characteristics and trend prediction of climate in Wugong Area[J]. Research of Soil and Water Conservation, 2017, 24(4): 252-258. ]
[30] 黄济琛, 陆宝宏, 范仲丽, 等. 清江流域降水径流年内分配特征及其同步性分析[J]. 三峡大学学报(自然科学版), 2017, 39(6): 25-30.
[30] [Huang Jichen, Lu Baohong, Fan Zhongli, et al. Analysis of annual distribution of precipitation and runoff and synchronism of their variation in Qingjiang Basin[J]. Journal of China Three Gorges University(Natural Sciences Edition), 2017, 39(6): 25-30. ]
[31] 牛最荣, 王启优, 孙栋元, 等. 基于径流还现的洮河流域径流变化特征研究[J]. 干旱区地理, 2021, 44(1): 149-157.
[31] [Niu Zuirong, Wang Qiyou, Sun Dongyuan, et al. Runoff variation characteristics of Taohe River Basin based on calculation of current runoff[J]. Arid Land Geography, 2021, 44(1): 149-157. ]
[32] 牛最荣, 陈学林, 王学良. 白龙江干流代表站径流变化特征及未来趋势预测[J]. 水文, 2015, 35(5): 91-96.
[32] [Niu Zuirong, Chen Xuelin, Wang Xueliang. Runoff variation characteristics of representative stations on mainstream of Bailongjiang River and trend prediction[J]. Journal of China Hydrology, 2015, 35(5): 91-96. ]
[33] 刘树, 王燕, 胡凤阁. 对灰色预测模型残差问题的探讨[J]. 统计与决策, 2008, 14(1): 9-11.
[33] [Liu Shu, Wang Yan, Hu Fengge. Discussion on residual error of grey prediction model[J]. Statistics & Decision, 2008, 14(1): 9-11. ]
[34] 曹辉, 黄强, 白涛, 等. 径流预测方法对比分析[J]. 人民黄河, 2009, 31(9): 36-37.
[34] [Cao Hui, Huang Qiang, Bai Tao, et al. Comparative analysis of runoff forecasting methods[J]. Yellow River, 2009, 31(9): 36-37. ]
[35] 陈建龙, 刘永峰, 钱鞠, 等. R/S分析法与GM(1,1)灰色模型相结合的鸳鸯池水库入库径流量预测[J]. 水资源与水工程学报, 2018, 29(5): 148-153,158.
[35] [Chen Jianlong, Liu Yongfeng, Qian Ju, et al. Annual runoff inflow into Yuanyangchi reservoir prediction based on the combination of R/S analysis and GM(1, 1) grey model[J]. Journal of Water Resources and Water Engineering, 2018, 29(5): 148-153, 158. ]
[36] 李建林, 昝明军, 李宝玲. 基于R/S分析的黑河出山年径流量灰色预测[J]. 地域研究与开发, 2014, 33(5): 127-131.
[36] [Li Jianlin, Zan Mingjun, Li Baoling. Grey prediction of out-mountainous annual runoff of Heihe River based on R/S analysis[J]. Areal Research and Development, 2014, 33(5): 127-131.]
[37] 李福兴. 玛纳斯河径流演变特性及其中长期径流预报模型研究[D]. 石河子: 石河子大学, 2021.
[37] [Li Fuxing. Study on Manas River Runoff Evolution Characteristics and Its Medi and Long-term Forecast Model[D]. Shihezi: Shihezi University, 2021. ]
[38] 李福兴, 陈伏龙, 蔡文静, 等. 基于EMD组合模型的径流多尺度预测[J]. 地学前缘, 2021, 28(1): 428-437.
[38] [Li Fuxing, Chen Fulong, Cai Wenjing, et al. Multiscale runoff prediction based on the EMD combined model[J]. Earth Science Frontiers, 2021, 28(1): 428-437. ]
[39] 丁宏伟, 魏余广, 李爱军, 等. 疏勒河出山径流量变化特征及趋势分析[J]. 干旱区研究, 2001, 18(3): 48-53.
[39] [Ding Hongwei, Wei Yuguang, Li Aijun, et al. The change characteristics and the trend prediction of streamflow at the debouchure of Shulehe River[J]. Arid Zone Research, 2001, 18(3): 48-53. ]
[40] 郭生练, 郭家力, 侯雨坤, 等. 基于Budyko假设预测长江流域未来径流量变化[J]. 水科学进展, 2015, 26(2): 151-160.
[40] [Guo Shenglian, Guo Jiali, Hou Yukun, et al. Prediction of future runoff change based on Budyko hypothesis in Yangtze River Basin[J]. Advances in Water Science, 2015, 26(2): 151-160. ]
Outlines

/