Analysis of water balance change and influencing factors in Issyk-Kul Lake in recent 60 years
Received date: 2022-01-22
Revised date: 2022-08-25
Online published: 2022-10-25
Based on the satellite data, the water level and area information of Lake Issyk-Kul was extracted, and the water volume was reconstruct; combined with CRU meteorological data from 1960-2020, the temperature and precipitation observation data from 1960-2000 at the Cholpon-Ata meteorological station and the water volume observation data into the lake, the lake water balance model was established to analyze the changing characteristics of each element of the water balance and to explore its influencing factors. The results indicated that: (1) Since 1960, the water volume of Issyk-Kul Lake has undergone a process of continuous decrease and fluctuating increase, with 1998 being the inflection point of the change; from the 1960s to the mid-1980s, the water volume into the lake decreased continuously mainly due to the influence of irrigation diversions, and then turned to an increasing trend after 1986 with the decrease of irrigation water and the increase of precipitation and glacial meltwater; precipitation in the lake area increased at a rate of 9.1 mm·(10a)-1, and the evapotranspiration tends to increase significantly with increasing temperature and lake area. (2) Before the mid-1980s, Issyk-Kul had a negative water balance in most years, and groundwater continued to recharge the lake; since 1986, the water balance deficit of the lake gradually decreased, and since 1998, the positive balance has been dominated. (3) The interaction of water balance components such as runoff, precipitation and evaporation determines the changes in lake water volume, while climate change in the flow-producing areas and irrigation diversions in irrigation areas indirectly drive the changes in lake water volume by changing runoff; from 1960 to 1986, human activities, mainly irrigation diversions, were the dominant factor driving the changes in Issyk-Kul water volume, with a contribution of 71.6%, and since 1987 the cumulative contribution of climate change factors to changes in lake water volume exceeds 80%.
Key words: Issyk-Kul Lake; water balance; runoff; climate change
WANG Xiaofei,HUANG Yue,LIU Tie,LI Junli,WANG Zheng,ZAN Chanjuan,DUAN Yongchao . Analysis of water balance change and influencing factors in Issyk-Kul Lake in recent 60 years[J]. Arid Zone Research, 2022 , 39(5) : 1576 -1587 . DOI: 10.13866/j.azr.2022.05.22
[1] | 成晨, 傅文学, 胡召玲, 等. 基于遥感技术的近30年中亚地区主要湖泊变化[J]. 国土资源遥感, 2015, 27(1): 146-152. |
[1] | [Cheng Chen, Fu Wenxue, Hu Zhaoling, et al. Changes of major lakes in Central Asia over the past 30 years revealed by remote sensing technology[J]. Remote Sensing for Land and Resources, 2015, 27(1): 146-152. ] |
[2] | 姚俊强, 刘志辉, 杨青, 等. 近130年来中亚干旱区典型流域气温变化及其影响因子[J]. 地理学报, 2014, 69(3): 291-302. |
[2] | [Yao Junqiang, Liu Zhihui, Yang Qing, et al. Temperature variability and its possible causes in the typical basins of the arid Central Asia in recent 130 years[J]. Acta Geographica Sinica, 2014, 69(3): 291-302. ] |
[3] | 李均力, 包安明, 胡汝骥, 等. 亚洲中部干旱区湖泊的地域分异性研究[J]. 干旱区研究, 2013, 30(6): 941-950. |
[3] | [Li Junli, Bao Anming, Hu Ruji, et al. Regional difference of lakes in the arid regions in Central Asia[J]. Arid Zone Research, 2013, 30(6): 941-950. ] |
[4] | 邵新媛. 伊塞克湖近期变化及其原因[J]. 干旱区地理, 1992, 15(2): 81-88. |
[4] | [Shao Xinyuan. The recent change of water level of Yiseke lake and its cause[J]. Arid Land Geography, 1992, 15(2): 81-88. ] |
[5] | 米热古力·艾尼瓦尔, 海米提·依米提, 麦麦提吐尔逊·艾则孜, 等. 基于小波分析的伊塞克湖水位变化特征[J]. 水土保持研究, 2014, 21(1): 168-172. |
[5] | [Mihrigul Anwar, Hamid Yimit, Mamattursun Eziz, et al. Water level variations of Issyk-Kul lake based on wavelet analysis[J]. Research of Soil and Water Conservation, 2014, 21(1): 168-172. ] |
[6] | Romanovsky V V. WaterLevel Variations and Water Balance of Lake Issyk-Kul. Lake Issyk-Kul: Its Natural Environment[M]. Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002, 13: 45-58. |
[7] | 米热古力·艾尼瓦尔. 博斯腾湖和伊塞克湖水位变化对气候变化的响应对比研究[D]. 乌鲁木齐: 新疆大学, 2014. |
[7] | [Mihrigul Anwar. Comparative Study on Water Level Change and Its Climate Change Response of Baghrash Lake and Issyk-Kul[D]. Urumqi: Xinjiang University, 2014. ] |
[8] | 李均力, 陈曦, 包安明. 2003—2009年中亚地区湖泊水位变化的时空特征[J]. 地理学报, 2011, 66(9): 1219-1229. |
[8] | [Li Junli, Chen Xi, Bao Anming. Spatial-temporal characteristics of lake level changes in Central Asia during 2003-2009[J]. Acta Geographica Sinica, 2011, 66(9): 1219-1229. ] |
[9] | 阿依努尔·买买提, 玉米提·哈力克, 阿依加马力·克然木. 天山典型湖泊水位变化影响因素对比分析——以博斯腾湖与伊塞克湖为例[J]. 干旱区资源与环境, 2017, 31(8): 143-147. |
[9] | [Aynur Mamat, Umit Halik, Ayjamal Keram. Remote sensing based analysis on environment changes of typical lakes in Tian shan mountains: A case study of Bosten Lake and Issyk-Kul Lake[J]. Journal of Arid Land Resources and Environment, 2017, 31(8): 143-147. ] |
[10] | 王国亚, 沈永平, 王宁练, 等. 气候变化和人类活动对伊塞克湖水位变化的影响及其演化趋势[J]. 冰川冻土, 2010, 32(6): 1097-1105. |
[10] | [Wang Guoya, Shen Yongping, Wang Ninglian, et al. The effects of climate change and human activities on the lake level of Issyk-Kul during the past 100 years[J]. Journal of Glaciology and Geocryology, 2010, 32(6): 1097-1105. ] |
[11] | 闫政新, 郭万钦. 1991—2014年中亚伊塞克湖湖泊面积变化遥感监测[J]. 测绘与空间地理信息, 2018, 41(2): 142-146. |
[11] | [Yan Zhengxin, Guo Wanqin. Remote sensing monitoring of the lake area of Issyk-Kul lake in Central Asia from 1991-2014[J]. Geomatics and Spatial Information Technology, 2018, 41(2): 142-146. ] |
[12] | 白洁, 陈曦, 李均力, 等. 1975—2007年中亚干旱区内陆湖泊面积变化遥感分析[J]. 湖泊科学, 2011, 23(1): 80-88. |
[12] | [Bai Jie, Chen Xi, Li Junli, et al. Changes of inland lake area in arid Central Asia during 1975-2007: A remote-sensing analysis[J]. Journal of Lake Sciences, 2011, 23(1): 80-88. ] |
[13] | 朱德祥. 伊塞克湖水资源问题[J]. 干旱区地理, 1988, 11(3): 84-86. |
[13] | [Zhu Dexiang. Water resources of Issyk-Kul Lake[J]. Arid Land Geography, 1988, 11(3): 84-86. ] |
[14] | 秦伯强. 近百年来亚洲中部内陆湖泊演变及其原因分析[J]. 湖泊科学, 1999, 11(1): 11-19. |
[14] | [Qin Boqiang. A preliminary investigation of lake evolution in 20-century in inland mainland Asia with relation to the global warming[J]. Journal of Lake Sciences, 1999, 11(1): 11-19. ] |
[15] | 秦伯强. 气候变化对内陆湖泊影响分析[J]. 地理科学, 1993, 13(3): 212-219, 295. |
[15] | [Qin Boqiang. Analysis of the influence of climate change on inland lakes[J]. Scientia Geographica Sinica, 1993, 13(3): 212-219, 295. ] |
[16] | 伊丽努尔·阿力甫江, 吉力力·阿不都外力, 丁之勇, 等. 伊塞克湖典型小流域径流变化差异性及其影响因素分析[J]. 水土保持学报, 2020, 34(6): 198-210. |
[16] | [Yilinuer Alifujiang, Jilili Abudouwaili, Ding Zhiyong, et al. Analysis of the difference of runoff variation and its influencing factors in typical small watershed of Issyk-Kul Basin[J]. Journal of Soil and Water Conservation, 2020, 34(6): 198-210. ] |
[17] | 尹仔锋, 尚华明, 魏文寿, 等. 基于树轮宽度的伊塞克湖入湖径流量重建与分析[J]. 沙漠与绿洲气象, 2014, 8(4): 8-14. |
[17] | [Yin Zaifeng, Shang Huaming, Wei Wenshou, et al. Runoff reconstruction and analysis of Issyk-Kul Lake based on tree-ring width[J]. Desert and Oasis Meteorology, 2014, 8(4): 8-14. ] |
[18] | 王国亚, 沈永平, 秦大河. 1860—2005年伊塞克湖水位波动与区域气候水文变化的关系[J]. 冰川冻土, 2006, 28(6): 854-860. |
[18] | [Wang Guoya, Shen Yongping, Qin Dahe. Issyk-Kul Lake level fluctuation during 1860-2005 and its relation with regional climatic and hydrological changes[J]. Journal of Glaciology and Geocryology, 2006, 28(6): 854-860. ] |
[19] | 沈永平. 1883—2001年(部分年份)吉尔吉斯斯坦逐月平均降水量数据. 国家冰川冻土沙漠科学数据中心(www.ncdc.ac.cn), 2019. |
[19] | [Shen Yongping. Monthly average precipitation data of Kyrgyzstan from 1883 to 2001 (partial years). National Cryosphere Desert Data Center(www.ncdc.ac.cn), 2019. ] |
[20] | 沈永平. 1879—2003年(部分年份)中亚地区吉尔吉斯斯坦逐月平均气温数据. 国家冰川冻土沙漠科学数据中心(www.ncdc.ac.cn), 2019. |
[20] | [Shen Yongping. Monthly average temperature data of Kyrgyzstan in Central Asia from 1879 to 2003 (partial years). National Cryosphere Desert Data Center (www.ncdc.ac.cn), 2019. ] |
[21] | Uwamahoro Solange, Liu T, Nzabarinda Vincent, et al. Modifications to snow-melting and flooding processes in the hydrological model: A case study in Issyk-Kul, Kyrgyzstan[J]. Atmosphere, 2021, 12(12): 1580. https://doi.org/10.3390/atmos12121580. |
[22] | Pierre. (2020). 中亚五国土地利用类型数据集(2000, 2005, 2010, 2015). 国家青藏高原科学数据中心, 2020. |
[22] | [Pierre. (2020). Data set of land use types of five Central Asian countries (2000, 2005, 2010, 2015). National Tibetan Plateau Data Center, 2020. ] |
[23] | 方晖. 中亚五国1:100万水系数据(2010年). 国家冰川冻土沙漠科学数据中心(www.ncdc.ac.cn), 2019. |
[23] | [Fang Hui. 1:1 million water system data of five Central Asian countries (2010). National Cryosphere Desert Data Center (www.ncdc.ac.cn), 2019. ] |
[24] | 骆剑承, 盛永伟, 沈占锋, 等. 分步迭代的多光谱遥感水体信息高精度自动提取[J]. 遥感学报, 2009, 13(4): 604-615. |
[24] | [Luo Jiancheng, Sheng Yongwei, Shen Zhanfeng, et al. Step by step iterative multi-spectral remote sensing water information extraction with high precision[J]. Journal of Remote Sensing, 2009, 13(4): 604-615. ] |
[25] | 闫政新. 基于遥感影像的伊塞克湖泊变化研究[D]. 沈阳: 辽宁工程技术大学, 2016. |
[25] | [Yan Zhengxin. Based on Remote Sensing Image to Study on the Issyk-Kul Lake’s Change[D]. Shenyang: Liaoning Technical University, 2016. ] |
[26] | FAO. Crop Evapotranspiration Guidelines for Computing Crop Water Requirements[J]. Food and Agriculture Organization of the United Nations Rome, 1998. |
[27] | Huang Y, Ma Y, Liu T, et al. Climate change impacts on extreme flows under IPCC RCP scenarios in the mountainous Kaidu watershed, Tarim River Basin[J]. Sustainability, 2020, 12(5): 2090. |
[28] | Hargreaves G H, Samani Z A. Reference crop evapotranspiration from temperature[J]. Applied Engineering in Agriculture, 1985, 1(2): 96-99. |
[29] | Szczypta C, Calvet J-C, Albergel C, et al. Verification of the new ECMWF ERA-Interim reanalysis over France[J]. Hydrology and Earth System Sciences, 2011, 15(2): 647-666. |
[30] | 喻雪晴, 穆振侠. 降水资料匮乏地区不同再分析数据降尺度效果的评价[J]. 水电能源科学, 2020, 38(9): 5-8, 23. |
[30] | [Yu Xueqing, Mu Zhenxia. Evaluation of downscaling effect of different reanalysis data in regions with insufficient precientation data[J]. Water Resources and Power, 2020, 38(9): 5-8, 23. ] |
[31] | 罗敏. 干旱区气候变化对新疆典型流域水资源的影响研究[D]. 北京: 中国科学院大学, 2019. |
[31] | [Luo Min. Study on the Climate Change in Arid Regions and Its Impact on Water Resources in Typical River Basing of Xinjiang[D]. Beijing: University of Chinese Academy of Sciences, 2019. ] |
[32] | 中华人民共和国水利部. 水文情报预报规范: SL 250-2000[S]. 北京: 中国水利水电出版社, 2000. |
[32] | [Ministry of Water Resources of the People’s Republic of China. Standard for Hydrological Information and Hydrological Forecasting: SL 250-2000[S]. Beijing: China Water & Power Press, 2000. ] |
[33] | 昝婵娟, 黄粤, 李均力, 等. 1990—2019年咸海水量平衡及其影响因素分析[J]. 湖泊科学, 2021, 33(4): 1265-1275. |
[33] | [Zan Chanjuan, Huang Yue, Li Junli, et al. Analysis of water balance in Aral Sea and the influencing factors from 1990 to 2019[J]. Journal of Lake Sciences, 2021, 33(4): 1265-1275. ] |
[34] | РОМАНОВСКИЙВ В, 秦伯强. 关于伊塞克湖水位下降的原因[J]. 湖泊科学, 1992, 4(3): 38-43. |
[34] | [РОМАНОВСКИЙВ В, Qin Boqiang. On decline of Issyk-Kul Lake level[J]. Journal of Lake Sciences, 1992, 4(3): 38-43. ] |
[35] | Yilinuer Alifujiang, Jilili Abuduwaili, Ma Long, et al. System dynamics modeling of water level variations of Lake Issyk-Kul, Kyrgyzstan[J]. Water, 2017, 9(12): 989. |
[36] | 沈永平, 刘时银, 丁永建, 等. 天山南坡台兰河流域冰川物质平衡变化及其对径流的影响[J]. 冰川冻土, 2003, 25(2): 124-129. |
[36] | [Shen Yongping, Liu Shiyin, Ding Yongjian, et al. Glacier mass balance change in Tailanhe River watersheds on the south slope of the Tianshan Mountains and its impact on water resources[J]. Journal of Glaciology and Geocryology, 2003, 25(2): 124-129. ] |
[37] | 沈伟峰, 缪启龙, 魏铁鑫, 等. 中亚地区近130多a温度变化特征[J]. 干旱气象, 2013, 31(1): 32-36, 42. |
[37] | [Shen Weifeng, Miao Qilong, Wei Tiexin, et al. Analysis of temperature variation in recent 130 years in Central Asia[J]. Journal of Arid Meteorology, 2013, 31(1): 32-36, 42. ] |
[38] | 康世昌, 郭万钦, 钟歆玥, 等. 全球山地冰冻圈变化、影响与适应[J]. 气候变化研究进展, 2020, 16(2): 143-152. |
[38] | [Kang Shichang, Guo Wanqin, Zhong Xinyue, et al. Changes in the mountain cryosphere and their impacts and adaptation measures[J]. Climate Change Research, 2020, 16(2): 143-152. ] |
[39] | 施雅风. 山地冰川与湖泊萎缩所指示的亚洲中部气候干暖化趋势与未来展望[J]. 地理学报, 1990, 45(1): 1-13. |
[39] | [Shi Yafeng. Glacier recession and lake shrinkage indicating the climatic warming and drying trend in Central Asia[J]. Acta Geographica Sinica, 1990, 45(1): 1-13. ] |
[40] | Kapitsa V, Shahgedanova M, Severskiy I, et al. Assessment of changes in mass balance of the Tuyuksu group of Glaciers, northern Tien Shan, between 1958 and 2016 using ground-based observations and pléiades satellite imagery[J]. Frontiers in Earth Science, 2020, 8: 259. |
/
〈 | 〉 |