Applied Climate

Construction of climate warming and humidification evaluation index and its application in Qinghai Province

Expand
  • 1. Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan 430000, Hubei, China
    2. Resource And Environmental Engineering College of Yangtze University, Wuhan 430000, Hubei, China
    3. Huanghe Hy-Dropower Devel Opement Co. Ltd, Xining 810000, Qinghai, China
    4. China Yangtze Power Co. Ltd, Yichang 443000, Hubei, China

Received date: 2022-03-30

  Revised date: 2022-06-09

  Online published: 2022-10-25

Abstract

Different methods have different research results on the duration and variation of this phenomenon, causing dissidence. In this paper, the evaluation index of climate warming and humidification was constructed by combining meteorological factors and drought and vegetation indexes. The surface moisture index (Hi), self-checking Palmer drought index (sc_PDSI), and annual NDVI were used to construct the evaluation index of the warming and humidification grade based on the method of data normalization. This kind of index was used to comprehensively evaluate the spatial and temporal distribution of climate warming and humidity in Qinghai Province over the past 60 years to verify the applicability of the index in different time series lengths and cover different factors. The evaluation results show the following: (1) the overall climate of Qinghai Province over the past 60 years is in the stage of obvious indigenous warming and micro-humidifying. The affected regions are concentrated in parts of the Qilian Mountains in the southeast, southern to the southeast of the Yellow River Basin and Lancang River Basin. (2) Climate change has not changed the distribution pattern of climate warming and water resources in Qinghai Province over the past 60 years. (3) This kind of index has positive applicability for regional long-time scale warming and humidifying evaluation and can objectively and timely reflect the warming and humidifying situation of the evaluation area.

Cite this article

WANG Yonghui,YE Xiaojuan,PAN Hongzhong,BAI Yu,DONG Defu,YAO Huaming . Construction of climate warming and humidification evaluation index and its application in Qinghai Province[J]. Arid Zone Research, 2022 , 39(5) : 1437 -1448 . DOI: 10.13866/j.azr.2022.05.09

References

[1] 施雅风, 沈永平, 胡汝骥. 西北气候由暖干向暖湿转型的信号、影响和前景初步探讨[J]. 冰川冻土, 2002, 24(3): 219-226.
[1] [Shi Yafeng, Shen Yongping, Hu Ruji. Preliminary study on signal, impact and foreground of climatic Shift from warm-dry to warm-humid in Northwest China[J]. Journal of Glaciolgy and Geocryology, 2002, 24(3): 219-226. ]
[2] 张存杰, 李栋梁, 王小平. 东北亚近100年降水变化及未来10-15年预测研究[J]. 高原气象, 2004, 23(6): 919-929.
[2] [Zhang Cunjie, Li Dongliang, Wang Xiaoping. Study on precipitation variability in last 100 years and trend prediction in Northeast Asia in future 10-15 years[J]. Plateau Meteorology, 2004, 23(6): 919-929. ]
[3] 张强, 张存杰, 白虎志, 等. 西北地区气候变化新动态及对干旱环境的影响——总体暖干化, 局部出现暖湿迹象[J]. 干旱气象, 2010, 28(1): 1-7.
[3] [Zhang Qiang, Zhang Cunjie, Bai Huzhi, et al. New development of climate change in Northwest China and its impact on arid environment[J]. Journal of Arid Meteorology, 2010, 28(1): 1-7. ]
[4] 陈冬冬, 戴永久. 近五十年我国西北地区降水强度变化特征[J]. 大气科学, 2009, 33(5): 923-935.
[4] [Chen Dongdong, Dai Yongjiu. Characteristics of Northwest China rainfall intensity in recent 50 years[J]. Chinese Journal of Atmospheric Sciences, 2009, 33(5): 923-935. ]
[5] 牛涛, 刘洪利, 宋燕, 等. 青藏高原气候由暖干到暖湿时期的年代际变化特征研究[J]. 应用气象学报, 2005, 16(6): 763-771.
[5] [Niu Tao, Liu Hongli, Song Yan, et al. Study on decade change of climate shift from warm-dry period to warm-wet period over Tibetan plateau[J]. Journal of Applied Meteorological Science, 2005, 16(6): 763-771. ]
[6] 李林, 李凤霞, 朱西德, 等. 三江源地区极端气候事件演变事实及其成因探究[J]. 自然资源学报, 2007, 22(4): 656-663.
[6] [Li Lin, Li Fengxia, Zhu Xide, et al. Study on the evolution law of the extreme climatic events over the source region of the Three Rivers[J]. Journal of Natural Resources, 2007, 22(4): 656-663. ]
[7] 李林, 朱西德, 王振宇, 等. 青藏高原气候变化趋于暖湿化的若干事实[C]// 中国气象学会. 第26届中国气象学会年会气候变化分会场论文集. 杭州: 中国气象学会, 2009: 944-950.
[7] [Li Lin, Zhu Xide, Wang Zhengyu, et al. Some facts of warming and humidifying climate change in Qinghai-Tibet Plateau[C]// China Meteorological Society. Papers on Climate Change Branch of the 26th Annual Conference of China Meteorological Society. Hangzhou: China Meteorological Society, 2009: 944-950. ]
[8] 李林, 陈晓光, 王振宇, 等. 青藏高原区域气候变化及其差异性研究[J]. 气候变化研究进展, 2010, 6(3): 181-186.
[8] [Li Lin, Chen Xiaoguang, Wang Zhengyu, et al. Climate change and its regional differences over the Tibetan Plateau[J]. Advances in Climate Change Research, 2010, 6(3): 181-186. ]
[9] 李林, 李红梅, 申红艳, 等. 青藏高原气候变化的若干事实及其年际振荡的成因探讨[J]. 冰川冻土, 2018, 40(6): 1079-1089.
[9] [Li Lin, Li Hongmei, Shen Hongyan, et al. The truth and interannual oscillation causes for climate change in the Qinghai-Tibet Plateau[J]. Journal of Glaciology and Geocryology, 2018, 40(6): 1079-1089. ]
[10] 刘德坤, 王军邦, 齐述华. 基于湿润指数的近35年青海省干湿状况变化分析[J]. 水土保持研究, 2014, 21(2): 246-250, 256, 335.
[10] [Liu Dekun, Wang Junbang, Qi Shuhua, et al. Analysis on dry trend based on moisture index in Qinghai Province in the recent 35 years[J]. Research of Soil and Water Conservation, 2014, 21(2): 246-250, 256, 335. ]
[11] Liu Zhiyong, Zhou Ping, Zhang Fangqiu, et al. Spatiotemporal characteristics of dryness/wetness conditions across Qinghai Province, Northwest China[J]. Agricultural and Forest Meteorology, 2013, 182-183: 101-108.
[12] 伍云华. 青海省水资源现状评价及对策建议[J]. 水利规划与设计, 2017(9): 35-36, 54.
[12] [Wu Yunhua. Water resources status evaluation and countermeasures in Qinghai Province[J]. Water Resources Planning and Design, 2017(9): 35-36, 54. ]
[13] Harris I, Osborn T J, Jones P, et al. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset[J]. Scientific Data, 2020, 7(1). https://doi.org/10.6084/m9.figshare.11980500.
[14] 卫林勇, 江善虎, 任立良, 等. CRU产品在中国大陆的干旱事件时间性效用评估[J]. 水资源保护, 2021, 37(2): 112-120.
[14] [Wei Linyong, Jiang Shanhu, Ren Liliang, et al. Utility assessment of CRU products for temporality of drought events in China’s mainland[J]. Water Resources Protection, 2021, 37(2): 112-120. ]
[15] 张寅, 闫凯, 刘钊, 等. 基于CRU数据的1901—2018年全球陆表气温时空变化特征分析[J]. 首都师范大学学报(自然科学版), 2020, 41(6): 51-58.
[15] [Zhang Yin, Yan Kai, Liu Zhao, et al. Analysis of spatio-temporal variation characteristics of global surface air temperature from 1901 to 2018 based on CRU data[J]. Journal of Capital Normal University(Natural Science Edition), 2020, 41(6): 51-58. ]
[16] 王丹, 王爱慧. 1901—2013年GPCC和CRU降水资料在中国大陆的适用性评估[J]. 气候与环境研究, 2017, 22(4): 446-462.
[16] [Wang Dan, Wang Aihui. Applicability assessment of GPCC and CRU precipitation products in China during 1901 to 2013[J]. Climatic and Environmental Research, 2017, 22(4): 446-462. ]
[17] 阴晓伟, 吴一平, 赵文智, 等. 西北旱区潜在蒸散发的气候敏感性及其干旱特征研究[J]. 水文地质工程地质, 2021, 48(3): 20-30.
[17] [Yin Xiaowei, Wu Yiping, Zhao Wenzhi, et al. Drought characteristics and sensitivity of potential evapotranspiration to climatic factors in the arid and semi-arid areas of Northwest China[J]. Hydrogeology & Engineering Geology, 2021, 48(3): 20-30. ]
[18] Ekstrom M, Jones P D, Fowler H J, et al. Regional climate model data used within the SWURVE project 1: projected changes in seasonal patterns and estimation of PET[J]. Hydrology and Earth System sciences, 2007, 11(3): 1069-1083.
[19] 黄小燕, 张明军, 贾文雄, 等. 中国西北地区地表干湿变化及影响因素[J]. 水科学进展, 2011, 22(2): 151-159.
[19] [Huang Xiaoyan, Zhang Mingjun, Jia Wenxiong, et al. Variations of surface humidity and its influential factors in Northwest China[J]. Advances in Water Science, 2011, 22(2): 151-159. ]
[20] 杜军, 周刊社, 袁雷. 1971—2018年西藏羌塘国家级自然保护区地表湿润指数的变化趋势[J]. 中国水土保持科学, 2021, 19(4): 13-23.
[20] [Du Jun, Zhou Kanshe, Yuan Lei. Climate change tendency of surface humidity index in Chang Tang Nature Reserve of Tibet from 1971 to 2018[J]. Science of Soil and Water Conservation, 2021, 19(4): 13-23. ]
[21] 蔡鸿昆, 雷添杰, 程慧, 等. 旱情监测指标体系研究进展及展望[J]. 水利水电技术, 2020, 51(1): 77-87.
[21] [Cai Hongkun, Lei Tianjie, Cheng Hui, et al. Advances in drought monitoring index system[J]. Water Resources and Hydropower Engineering, 2020, 51(1): 77-87. ]
[22] Mika J, Horváth S, Makra L, et al. The Palmer Drought Severity Index (PDSI) as an indicator of soil moisture[J]. Physics and Chemistry of The Earth, Parts A/B/-C, 2005, 30(1-3): 223-230.
[23] 胡光成, 周杰, 卢静, 等. 中国西南地区历年月度干旱指数(1951-2016)和8天频率土壤湿度(2007-2016)数据集[J]. 全球变化数据学报, 2020, 4(3): 248-256.
[23] [Hu Guangcheng, Zhou Jie, Lu Jing, et al. Monthly drought index(1951-2016) and 8-day frequency soil moisture(2007-2016) dataset in Southwest China[J]. Journal of Global Change Data & Discovery, 2020, 4(3): 248-256. ]
[24] 张乐艺, 李霞, 冯京辉, 等. 2000—2018年黄河流域NDVI时空变化及其对气候和人类活动的双重响应[J]. 水土保持通报, 2021, 41(5): 276-286.
[24] [Zhang Leyi, Li Xia, Feng Jinhui, et al. Spatial-temporal changes of NDVI in Yellow River basin and its dual response to climate change and human activities during 2000-2018[J]. Bulletin of Soil and Water Conservation, 2021, 41(5): 276-286. ]
[25] 叶培龙, 张强, 王莺, 等. 1980—2018年黄河上游气候变化及其对生态植被和径流量的影响[J]. 大气科学学报, 2020, 43(6): 967-979.
[25] [Ye Peilong, Zhang Qiang, Wang Ying, et al. Climate change in the upper Yellow River Basin and its impact on ecological vegetation and runoff from 1980 to 2018[J]. Transactions of Atmospheric Sciences, 2020, 43(6): 967-979. ]
[26] 伊俊兰, 祁栋林, 许雪莲, 等. 1961—2019年青海省气候生产潜力时空演变特征[J]. 江苏农业科学, 2021, 49(20): 234-242.
[26] [Yi Junlan, Qi Donglin, Xu Xuelian, et al. Temporal and spatial evolution characteristics of climate productivity potential in Qinghai Province from 1961 to 2019[J]. Jiangsu Agricultural Sciences, 2021, 49(20): 234-242. ]
[27] 张强, 朱飙, 杨金虎, 等. 西北地区气候湿化趋势的新特征[J]. 科学通报, 2021, 66(Z2): 3757-3771.
[27] [Zhang Qiang, Zhu Biao, Yang Jinhu, et al. New characteristics about the climate humidification trend in Northwest China[J]. Chinese Science Bulletin, 2021, 66(Z2): 3757-3771. ]
[28] 韩辉邦, 马明国, 马守存, 等. 近30 a青海省植被变化及其气候驱动因子分析[J]. 干旱区研究, 2017, 34(5): 1164-1174.
[28] [Han Huibang, Ma Mingguo, Ma Shoucun, et al. Vegetation change and its driving climatic factors in Qinghai Province in recent 30 years[J]. Arid Zone Research, 2017, 34(5): 1164-1174. ]
[29] 刘小园, 刘希胜. 青海省湿地面积变化特征及成因分析[J]. 人民黄河, 2021, 43(8): 90-95, 101.
[29] [Liu Xiaoyuan, Liu Xisheng. Variation characteristics and cause analysis of wetland area in Qinghai province[J]. Yellow River, 2021, 43(8): 90-95, 101. ]
[30] 刘彩红, 王朋岭, 温婷婷, 等. 1960—2019年黄河源区气候变化时空规律研究[J]. 干旱区研究, 2021, 38(2): 293-302.
[30] [Liu Caihong, Wang Pengling, Wen Tingting, et al. Spatio-temporal characteristics of climate change in the Yellow River source area from 1960 to 2019[J]. Arid Zone Research, 2021, 38(2): 293-302. ]
[31] 保广裕, 乜虹, 戴升, 等. 黄河上游河源区不同量级降水对径流变化的影响[J]. 干旱区研究, 2021, 38(3): 704-713.
[31] [Bao Guangyu, Nie Hong, Dai Sheng, et al. Research on effects of different precipitation magnitudes on runoff changes in the headwater region of the upper Yellow River[J]. Arid Zone Research, 2021, 38(3): 704-713. ]
[32] Zhang Qiang, Yang Jinhu, Wang Wei, et al. Climatic warming and humidification in the arid region of Northwest China: Multi-scale characteristics and impacts on ecologyical vegetation[J]. Journal of Meteorological Research, 2021, 35(1): 113-127.
[33] Zhang Qiang, Yang Jinhu, Duan Xinyu, et al. The eastward expansion of the climate humidification trend in Northwest China and the synergistic influences on the circulation mechanism[J]. Climate Dynamics, 2022, https://doi.org/10.1007/s00382-022-06221-4.
[34] 姚俊强, 李漠岩, 迪丽努尔·托列吾别克, 等. 不同时间尺度下新疆气候“暖湿化”特征[J]. 干旱区研究, 2022, 39(2): 333-346.
[34] [Yao Junqiang, Li Moyan, Dilinuer Tuoliewubieke, et al. The assessment on “warming-wetting” trend in Xinjiang at multi-scale during 1961-2019[J]. Arid Zone Research, 2022, 39(2): 333-346. ]
Outlines

/