Applied Climate

Study on spatiotemporal characteristics of drought in Xinjiang based on Multi-Source Weighted-Ensemble Precipitation multi-source merged precipitation product

Expand
  • Xinjiang Hydrological Bureau, Urumqi 830000, Xinjiang, China

Received date: 2022-04-02

  Revised date: 2022-05-23

  Online published: 2022-10-25

Abstract

Meteorological stations in Xinjiang are sparse and unevenly distributed, resulting in drought monitoring based on in-situ observations in Xinjiang which are insufficient in spatial representativeness. Remote-sensed precipitation products have the advantages of wide coverage, high spatial resolution, and timeliness compared to data from stations. Thus, remote-sensed precipitation products are important for drought monitoring in Xinjiang with scarce in-situ observations. Multi-Source Weighted-Ensemble Precipitation (MSWEP) has been applied in various applications worldwide. With the foundation of global climate change, Xinjiang has experienced an increasing trend in the frequency of droughts and the variability of precipitation. This paper evaluates the accuracy of the MSWEP products using data from 106 observatories. Based on the Standardized Precipitation Index (SPI), MSWEP was adopted to study the temporal variations in dry/wet conditions, identify drought events, and study drought characteristics in Xinjiang from 1980 to 2021. The main results were as follows: (1) MSWEP was highly correlated with data from in-situ stations (>0.8), which supports its application in drought monitoring. (2) Xinjiang had become more humid in the studied period. (3) Thirteen severe drought events were identified since 1980. Among them, the one from 1985 to 1987 was the most severe, and the one from May-October, 2009, was the most intense. (4) Drought events have various features in duration, intensity, and severity. Some droughts were intense with a short duration, while others were long and more severe. Overall, MSWEP has a high potential for drought monitoring, especially for regions where ground-based observatories are scarce. Based on MSWEP, Xinjiang was found to experience a wetting trend and frequent drought events with different characteristics.

Cite this article

WANG Jiaoyan . Study on spatiotemporal characteristics of drought in Xinjiang based on Multi-Source Weighted-Ensemble Precipitation multi-source merged precipitation product[J]. Arid Zone Research, 2022 , 39(5) : 1398 -1409 . DOI: 10.13866/j.azr.2022.05.06

References

[1] 木沙·如孜, 雷晓云, 白云岗, 等. 塔里木河流域旱灾发生规律[J]. 干旱区研究, 2014, 31(2): 274-278.
[1] [Musha Ruzi, Lei Xiaoyun, Bai Yungang, et al. Historical drought disasters occurred in the Tarim River Basin[J]. Arid Zone Research, 2014, 31(2): 274-278. ]
[2] 唐湘玲, 吕新, 欧阳异能, 等. 1978—2014年新疆农作物受极端气候事件影响的灾情变化趋势分析[J]. 中国农学通报, 2017, 33(3): 143-148.
[2] [Tang Xiangling, Lv Xin, Ouyang Yineng, et al. Disaster trend of crops affected by extreme climatic events in Xinjiang during 1978-2014[J]. Chinese Agricultural Science Bulletin, 2017, 33(3): 143-148. ]
[3] 吴美华, 王怀军, 孙桂丽, 等. 新疆农业气象灾害成因及其风险分析[J]. 干旱区地理, 2016, 39(6): 1212-1220.
[3] [Wu Meihua, Wang Huaijun, Sun Guili, et al. Formation and risk analysis of meteorological disasters in Xinjiang[J]. Arid Land Geography, 2016, 39(6): 1212-1220. ]
[4] Dracup J A, Lee K S, Paulson E G. On the definition of droughts[J]. Water Resources Research, 1980, 16(2): 297-302.
[5] 张强, 张良, 崔显成, 等. 干旱监测与评价技术的发展及其科学挑战[J]. 地球科学进展, 2011, 26(7): 763-778.
[5] [Zhang Qiang, Zhang Liang, Cui Xiancheng, et al. Progresses and challenges in drought ssessment and monitoring[J]. Advances in Earth Science, 2011, 26(7): 763-778. ]
[6] McKee T B, Doesken N J, Kleist J. The relationship of drought frequency and duration to time scales[C]// Proceedings of the Eighth Conference on Applied Climatology, Anaheim, California, 1993.
[7] 彭振华, 李艳忠, 余文君, 等. 遥感降水产品在中国不同气候区的适用性研究[J]. 地球信息科学学报, 2021, 23(7): 1296-1311.
[7] [Peng Zhenhua, Li Yanzhong, Yu Wenjun, et al. Research on the applicability of remote sensing precipitation products in different climatic regions of China[J]. Journal of Geo-Information Science, 2021, 23(7): 1296-1311. ]
[8] Guo H, Li M, Nzabarinda V, et al. Assessment of three long-term satellite-based precipitation pstimates against ground observations for drought characterization in northwestern China[J]. Remote Sensing, 2022, 14(4): 828. https://doi.org/10.3390/rs14040828.
[9] 新疆维吾尔自治区水资源公报. 新疆水资源公报(2002-2009)[EB/OL]. http:/slt.Xinjiang.gov.cn/slt/slnb/list_ej.shtml.
[9] [Water Xinjiang Communique. Xinjiang Water Resources Bulletin(2002-2009)[EB/OL]. http:/slt.Xinjiang.gov.cn/slt/slnb/list_ej.shtml. ]
[10] 胡文峰, 陈玲玲, 姚俊强, 等. 近55年来新疆多时间尺度干旱格局演变特征[J]. 人民珠江, 2019, 40(11): 1-9, 27.
[10] [Hu Wenfeng, Chen Lingling, Yao Junqiang, et al. Evolution characteristics of drought patterns at multiple timescales in Xinjiang for last 55 years[J]. Pearl River, 2019, 40(11): 1-9, 27. ]
[11] 姚俊强, 李漠岩, 迪丽努尔·托列吾别克, 等. 不同时间尺度下新疆气候“暖湿化”特征[J]. 干旱区研究, 2022, 39(2): 333-346.
[11] [Yao Junqiang, Li Moyan, Dilinuer Tuoliewubieke, et al. The assessment on“warming-wetting”trend in Xinjiang at multi-scale during 1961-2019[J]. Arid Zone Research, 2022, 39(2): 333-346. ]
[12] 施雅风, 沈永平, 李栋梁, 等. 中国西北气候由暖干向暖湿转型的特征和趋势探讨[J]. 第四纪研究, 2003, 23(2): 152-164.
[12] [Shi Yafeng, Shen Yongping, Li Dongliang, et al. Discussion on the present climate change from warm-dry to warm-wet in Northwest China[J]. Quaternary Science, 2003, 23(2): 152-164. ]
[13] 谢培, 顾艳玲, 张玉虎, 等. 1961-2015年新疆降水及干旱特征分析[J]. 干旱区地理, 2017, 40(2): 332-339.
[13] [Xie Pei, Gu Yanling, Zhang Yuhu, et al. Precipitation and drought characteristics in Xinjiang during 1961-2015[J]. Arid Land Geography, 2017, 40(2): 332-339. ]
[14] 轩俊伟, 郑江华, 刘志辉. 基于SPEI的新疆干旱时空变化特征[J]. 干旱区研究, 2016, 33(2): 338-344.
[14] [Xuan Junwei, Zheng Jianghua, Liu Zhihui. SPEI-based spatiotemporal variation of drought in Xinjiang[J]. Arid Zone Research, 2016, 33(2): 338-344. ]
[15] 张乐园, 王弋, 陈亚宁. 基于SPEI指数的中亚地区干旱时空分布特征[J]. 干旱区研究, 2020, 37(2): 331-340.
[15] [Zhang Leyuan, Wang Yi, Chen Yaning. Spatial and temporal distribution characteristics of drought in Central Asia based on SPEI index[J]. Arid Zone Research, 2020, 37(2): 331-340. ]
[16] 王乃哲, 景元书, 徐向华, 等. RDI指数在新疆5个地区干旱监测的应用[J]. 干旱区地理, 2020, 43(1): 99-107.
[16] [Wang Naizhe. Jing Yuanshu, Xu Xianghua, et al. Application of RDI index in drought monitoring of five regions in Xinjiang[J]. Arid Land Geography, 2020, 43(1): 99-107. ]
[17] 丁严, 许德合, 曹连海, 等. 基于CEEMD的LSTM和ARIMA模型干旱预测适用性研究——以新疆为例[J]. 干旱区研究, 2022, 39(3): 734-744.
[17] [Ding Yan, Xu Dehe, Cao Lianhai, et al. Applicability of the LSTM and ARIMA model in drought prediction based on CEEMD: A case study of Xinjiang[J]. Arid Zone Research, 2022, 39(3): 734-744. ]
[18] 尹文杰, 张梦琳, 胡立堂. 柴达木盆地干旱时空变化特征[J]. 干旱区研究, 2018, 35(2): 387-394.
[18] [Yin Wenjie, Zhang Menglin, Hu Litang. Spatiotemporal variation of drought in the Qaidam Basin[J]. Arid Zone Research, 2018, 35(2): 387-394. ]
[19] 王素萍, 王劲松, 张强, 等. 多种干旱指数在中国北方的适用性及其差异原因初探[J]. 高原气象, 2020, 39(3): 628-640.
[19] [Wang Suping, Wang Jinsong, Zhang Qiang, et al. Applicability evaluation of drough indices in northern China and the reasons for their differences[J]. Plateau Meteorology, 2020, 39(3): 628-640. ]
[20] 贺敏, 宋立生, 王展鹏, 等. 基于多源数据的干旱监测指数对比研究——以西南地区为例[J]. 自然资源学报, 2018, 33(7): 1257-1269.
[20] [He Min, Song Lisheng, Wang Zhanpeng, et al. Evaluation of drought monitoring indices based on multi-source data in Southwest China[J]. Journal of Natural Resources, 2018, 33(7): 1257-1269. ]
[21] 王舒, 肖高翔. 4种气象干旱指数在新疆的适用性分析[J]. 人民长江, 2021, 52(9): 86-92, 100.
[21] [Wang Shu, Xiao Gaoxiang. Applicability analysis of four meteorological drought indices in Xinjiang[J]. Yangtze River, 2021, 52(9): 86-92, 100. ]
[22] 卢新玉, 刘艳, 王秀琴, 等. 新疆地区多源降水融合试验[J]. 干旱区研究, 2020, 37(5): 1223-1232.
[22] [Lu Xinyu, Liu Yan, Wang Xiuqin, et al. Multisource precipitation data merging experiment in Xinjiang[J]. Arid Zone Research, 2020, 37(5): 1223-1232. ]
[23] 叶尔克江·霍依哈孜, 阿帕尔·肉孜, 柳宏英, 等. 新疆木垒县近51年春、夏季气象干旱特征分析[J]. 湖北农业科学, 2021, 60(14): 57-63.
[23] [Hoyhazi Erkejan, Ruzi Apar, Liu Hongying, et al. Analysis on the characteristics of spring and summer meteorological drought in Mulei county of Xinjiang in recent 51 years[J]. Hubei Agricultural Sciences, 2021, 60(14): 57-63. ]
[24] Shen Y, Xiong A Y, Wang Y, et al. Performance of high-resolution satellite precipitation products over China[J]. Journal of Geophysical Research : Atmospheres, 2010, 115(D2): 1-17.
[25] Beck H E, Wood E F, Pan M, et al. MSWEP V2 Global 3-Hourly 0.1° precipitation: Methodology and quantitative assessment[J]. Bulletin of the American Meteorological Society, 2019, 100(3): 473-500.
[26] Sen P K. Estimates of the regression coefficient based on Kendall’s Tau[J]. Journal of the American Statistical Association, 1968, 63(324): 1379-1389.
[27] Hamed K H, Rao A R. A modified Mann-Kendall trend test for autocorrelated data[J]. Journal of Hydrology, 1998, 204(1-4): 182-196.
[28] Daufresne M, Lengfellner K, Sommer U. Global warming benefits the small in aquatic ecosystems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(31): 12788-12793.
[29] Huang Q Z, Zhang Q, Singh V P, et al. Variations of dryness/wetness across China: Changing properties, drought risks, and causes[J]. Global and Planetary Change, 2017, 155 : 1-12.
[30] Huang S Z, Chang J X, Leng G Y et al. Integrated index for drought assessment based on variable fuzzy set theory: A case study in the Yellow River basin, China[J]. Journal of Hydrology, 2015, 527: 608-618.
[31] Joshi N, Gupta D, Suryavanshi S, et al. Analysis of trends and dominant periodicities in drought variables in India: A wavelet transform based approach[J]. Atmospheric Research, 2016, 182(15): 200-220.
[32] Merino A, López L, Hermida L, et al. Identification of drought phases in a 110-year record from western Mediterranean basin: Trends, anomalies and periodicity analysis for Iberian Peninsula[J]. Global and Planetary Change, 2015, 133: 96-108.
[33] Hong X G, Guo S L, Xiong L H, et al. Spatial and temporal analysis of drought using entropy-based standardized precipitation index: a case study in Poyang Lake basin, China[J]. Theoretical and Applied Climatology, 2015, 122(3): 543-556.
[34] Li J Z, Wang Y X, Li S F, et al. A Nonstationary Standardized Precipitation Index incorporating climate indices as covariates[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(23): 12082-12095.
[35] Vicente-Serrano S M, Beguería S, López-Moreno J I, et al. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration inde[J]. Journal of Climate, 2010, 23(7): 1696-1718.
[36] Beguería S, Vicente-Serrano S M, Reig F, et al. Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring[J]. International Journal of Climatology, 2014, 34(10): 3001-3023.
[37] Mahmood R, Li S, Khan B. Causes of recurring drought patterns in Xinjiang, China[J]. Journal of Arid Land, 2010, 2(4): 279-285.
[38] Li Z, Hao Z, Shi X, et al. An agricultural drought index to incorporate the irrigation process and reservoir operations: A case study in the Tarim River Basin[J]. Global and Planetary Change, 2016, 143: 10-20.
[39] Yao J, Zhao Y, Yu X. Spatial-temporal variation and impacts of drought in Xinjiang (Northwest China) during 1961-2015[J]. PeerJ, 2018, 6(e4926).
[40] Yevjevich V M. An Objective Approach to Definition and Investigations of Continental Hydrologic Droughts[M]. Fort Collins, Colorado: Colorado State University, 1967.
Outlines

/