Weather and Climate

Experimental study on microphysical characteristics of cumulus hybrid clouds in the Sanjiangyuan region in relation to aircraft observation

Expand
  • 1. Meteorological Disaster Prevention Technology Center in Qinghai Province, Xining 810000, Qinghai, China
    2. Weather Modification Office of Qinghai Province, Xining 81000, Qinghai, China
    3. Key Laboratory for Disaster Prevention and Mitigation in Qinghai Province, Qinghai, Xining 810000, Qinghai, China

Revised date: 2022-06-07

  Online published: 2022-10-25

Abstract

Using data from the physical detection tests of aircraft clouds carried out in the Sanjiangyuan region under the “Second Comprehensive Scientific Research on Qinghai-Tibet Plateau” project, this paper analyzes the macroscopic and microphysical characteristics of a cumulonimbus cloud and its convective bubbles in the Zeku region of Sanjiangyuan on September 13, 2020. The results indicate the following: (1) the temperature inside the cumulus hybrid cloud was between -23 ℃ and -10 ℃, the relative humidity was 90%-100%, and the liquid super-cooled water was between 0.04 g·m-3 and 0.70 g·m-3; (2) the average particle number concentration inside the convective bubble was higher compared to the surrounding stratus cloud 101 L-1, the average effective particle radius was larger, and the average liquid super-cooled water was 0.28 g·m-3, which was higher compared to the stratus cloud at about 0.03 g·m-3, a better correspondence between the particle number concentration and the liquid super-cooled water. Cloud particle spectra all showed multi-peak distribution, with peaks at 50 μm, 400 μm, and 1000 μm, in line with the distribution characteristics of typical high clouds. (3) The particles in cumulus mixed clouds were mostly aggregated ice crystal particles, and a small amount of hexagonal plate and linear ice crystals existed in some higher layers, with freezing and aggregation growth mechanisms dominating in the clouds and condensation growth dominating in the convective bubbles. The precipitation mechanism in the clouds was consistent with the “sowing-supply” mechanism.

Cite this article

HAN Huibang,ZHANG Yuxin,GUO Shiyu,TANG Wenting . Experimental study on microphysical characteristics of cumulus hybrid clouds in the Sanjiangyuan region in relation to aircraft observation[J]. Arid Zone Research, 2022 , 39(5) : 1360 -1370 . DOI: 10.13866/j.azr.2022.05.03

References

[1] 洪延超. 积层混合云数值模拟研究(I)——模式及其微物理过程参数化[J]. 气象学报, 1996, 54(5): 544-557.
[1] [Hong Yanchao. The numerical simulation study of convective-stratiform mixed clouds, Part (I): The model and parameterization of microphysical processes[J]. Acta Meteorologica Sinica, 1996, 54(5): 544-557. ]
[2] 黄敏松, 雷恒池. 云粒子的破碎对积层混合云微物理参量测量的影响[J]. 大气科学, 2021, 45(2): 369-378.
[2] [Huang Minsong, Lei Hengchi. Cloud particle shattering and its impact on cloud microphysical parameters measurement in stratiform clouds with embedded convection[J]. Chinese Journal of Atmospheric Sciences, 2021, 45(2): 369-378. ]
[3] 何晖, 高茜, 刘香娥, 等. 积层混合云结构特征及降水机理的个例模拟研究[J]. 大气科学, 2015, 39(2): 315-328.
[3] [He Hui, Gao Qian, Liu Xiang’e, et al. Numerical simulation of the structural characteristics and precipitation mechanism of stratiform clouds with embedded convections[J]. Chinese Journal of Atmospheric Sciences, 2015, 39(2): 315-328. ]
[4] 范烨, 郭学良, 张佃国, 等. 北京及周边地区2004年8、9月层积云结构及谱分析飞机探测研究[J]. 大气科学, 2010, 34(6): 1187-1200.
[4] [Fan Ye, Guo Xueliang, Zhang Dianguo, et al. Airborne particle measuring system measurement on structure and size distribution of stratocumulus during August to September in 2004 over Beijing and its surrounding areas[J]. Chinese Journal of Atmospheric Sciences, 2010, 34(6): 1187-1200. ]
[5] 朱士超, 郭学良. 华北一次积层混合云微物理和降水特征的数值模拟与飞机观测对比研究[J]. 大气科学, 2015, 39(2): 370-384.
[5] [Zhu Shichao, Guo Xueliang. A case study comparing WRF-model-simulated cloud microphysics and precipitation with aircraft measurements in stratiform clouds with embedded convection in northern China[J]. Chinese Journal of Atmospheric Sciences, 2015, 39(2): 370-384. ]
[6] 黄美元, 沈志来, 洪延超, 等. 半个世纪的云雾、降水和人工影响天气研究进展[J]. 大气科学, 2003, 27(4): 536-551.
[6] [Hang Meiyuan, Sheng Zhilai, Hong Yanchao, et al. Advance of research on cloud and precipitation and weather modification in the latest half century[J]. Chinese Journal of Atmospheric Sciences, 2003, 27(4): 536-551. ]
[7] 洪延超, 李宏宇. 一次锋面层状云云系结构、降水机制及人工增雨条件研究[J]. 高原气象, 2011, 30(5): 1308-1323.
[7] [Hong Yanchao, Li Hongyu. Cloud structure, precipitation mechanism and artificial enhancement precipitation condition for a frontal stratiform cloud system[J]. Plateau Meteorology, 2011, 30(5): 1308-1323. ]
[8] Plummer D M, McFarquhar G M, Rauber R M, et al. Structure and statistical analysis of the microphysical properties of generating cells in the comma head region of continental winter cyclones. Journal of the Atmospheric Sciences, 2014, 71(11): 4181-4203.
[9] Evans A G, Locatelli J D, Stoelinga M T, et al. The IMPROVE-1 Storm of 1-2 February 2001. Part II: Cloud Structures and the Growth of Precipitation[J]. Journal of the Atmospheric Sciences, 2005, 62(10): 3456-3473.
[10] 张佃国, 郭学良, 付丹红, 等. 2003年8—9月北京及周边地区云系微物理飞机探测研究[J]. 大气科学, 2007, 31(4): 596-610.
[10] [Zhang Dianguo, Guo Xueliang, Fu Danhong, et al. Aircraft observation on cloud microphysics in Beijing and its surrounding regions during August-September 2003[J]. Chinese Journal of Atmospheric Sciences, 2007, 31(4): 596-610. ]
[11] 王元, 牛生杰, 雷恒池. 利用三架飞机联合探测资料分析层积混合云催化物理效应[J]. 大气科学学报, 2017, 40(5): 686-696.
[11] [Wang Yuan, Niu Shenjie, Lei Hengchi. An examination of the microphysical responses to aircraft seeding of stratiform clouds with embedded convection using the joint observational data of three aircrafts[J]. Transactions of Atmospheric Sciences, 2017, 40(5): 686-696. ]
[12] 亓鹏, 郭学良, 卢广献, 等. 华北太行山东麓一次稳定性积层混合云飞机观测研究: 对流云/对流泡和融化层结构特征[J]. 大气科学, 2019, 43(6): 1365-1384.
[12] [Qi Peng, Guo Xueliang, Lu Guangxian, et al. Aircraft measurements of a stable stratiform cloud with embedded convection in eastern Taihang Mountain of North China: Characteristics of embedded convection and melting layer structure[J]. Chinese Journal of Atmospheric Sciences, 2019, 43(6): 1365-1384. ]
[13] 刘香娥, 高茜, 何晖, 等. 一次积-层混合云系垂直结构和降水机制的飞机观测资料分析与数值模拟[J]. 气象学报, 2020, 78(2): 277-288.
[13] [Liu Xiang’e, Gao Qian, He Hui, et al. Analysis of aircraft observation data and numerical simulation of vertical structure and precipitation mechanism of stratiform clouds with embedded convections[J]. Acta Meteorologica Sinica, 2020, 78(2): 277-288. ]
[14] 高茜, 郭学良, 何晖, 等. 基于飞机观测的华北积层混合云降水微物理特征的数值模拟研究[J]. 大气科学, 2020, 44(5): 899-912.
[14] [Gao Qian, Guo Xueliang, He Hui, et al. Numerical simulation study on the microphysical characteristics of stratiform clouds with embedded convections in northern China based on aircraft measurements[J]. Chinese Journal of Atmospheric Sciences, 2020, 44(5): 899-912. ]
[15] 孟宪红, 陈昊, 李照国, 等. 三江源区气候变化及其环境影响研究综述[J]. 高原气象, 2020, 39(6): 1133-1143.
[15] [Meng Xianhong, Chen Hao, Li Zhaoguo, et al. Review of climate change and its environmental influence on the Three-River Regions[J]. Plateau Meteorology, 2020, 39(6): 1133-1143. ]
[16] 赖敏, 吴绍洪, 戴尔阜, 等. 生态建设背景下三江源自然保护区生态系统服务价值变化[J]. 山地学报, 2013, 31(1): 10-19.
[16] [Lai Meng, Wu Shaohong, Dai Erfu, et al. Dynamic valuation on ecosystem services to ecological construction in the Three-River Headwaters Nature Reserve[J]. Journal of Mountain Science, 2013, 31(1): 10-19. ]
[17] 周秀骥, 赵平, 陈军明, 等. 青藏高原热力作用对北半球气候影响的研究[J]. 中国科学: 地球科学, 2009, 39(11): 1473-1486.
[17] [Zhou Xiuji, Zhao Ping, Chen Junming, et al. Impacts of thermodynamic processes over the Tibetan Plateau on the Northern Hemispheric climate[J]. Science China Earth Sciences, 2009, 39(11): 1473-1486. ]
[18] 徐祥德, 陶诗言, 王继志, 等. 青藏高原—季风水汽输送“大三角扇型”影响域特征与中国区域旱涝异常的关系[J]. 气象学报, 2002, 60(3): 257-266.
[18] [Xu Xiangde, Tao Shiyan, Wang Jizhi, et al. The relationship between water vapor transport features of Tibetan Plateau-Monsoon “Large Triangle” affection region and drought-flood abnormality of China[J]. Acta Meteorologica Sinica, 2002, 60(3): 257-266. ]
[19] 傅云飞, 李宏图, 自勇. TRMM卫星探测青藏高原谷地的降水云结构个例分析[J]. 高原气象, 2007, 26(1): 98-106.
[19] [Fu Yunfei, Li Hongtu, Zi Yong. Case study of precipitation cloud structure viewed by TRMM satellite in a valley of the Tibetan Plateau[J]. Plateau Meteorology, 2007, 26(1): 98-106. ]
[20] 常祎, 郭学良. 青藏高原那曲地区夏季对流云结构及雨滴谱分布日变化特征[J]. 科学通报, 2016, 61(15): 1706-1720.
[20] [Chang Yi, Guo Xueliang. Characteristics of convective cloud and precipitation during summer time at Naqu over Tibetan Plateau[J]. Chinese Science Bulletin, 2016, 61(15): 1706-1720. ]
[21] 王黎俊, 银燕, 姚展予, 等. 三江源地区秋季一次层积云飞机人工增雨催化试验的微物理响应[J]. 气象学报, 2013, 71(5): 925-939.
[21] [Wang Lijun, Yin Yan, Yao Zhanyu, et al. Microphysical responses as seen in a stratocumulus aircraft seeding experiment in autumn over the Sanjiangyun National Nature Reserve[J] Acta Meteorologica Sinica, 2013, 71(5): 925-939. ]
[22] Field P R, Möhler O, Connolly P, et al. Some ice nucleation characteristics of Asian and Saharan desert dust[J]. Atmospheric Chemistry and Physics, 2006, 6(1): 2991-3006.
[23] 雷恒池, 曾庆存, 李仑格, 等. 从自然控制论看黄河上游人工增雨[J]. 气候与环境研究, 2001, 6(4): 391-399.
[23] [Lei Hengchi, Zeng Qingcun, Li Lunge, et al. Investigation of artificial precipitation augmentation at the upper reaches of the Yellow River based on natural cybernetics[J]. Climatic and Environmental Research, 2001, 6(4): 391-399. ]
[24] 王宏, 雷恒池, 李书严, 等. 黄河上游河曲地区对流云催化增雨的数值模拟研究[J]. 气候与环境研究, 2004, 9(4): 619-630.
[24] [Wang Hong, Lei Hengchi, Li Shuyan, et al. The seeding experiments of severe convective clouds occurred in the Tibetan Plateau[J]. Climatic and Environmental Research, 2004, 9(4): 619-630. ]
[25] 李娟, 游来光, 胡志晋, 等. 黄河上游玛曲地区雨滴谱特征的观测研究[J]. 高原气象, 2006, 25(5): 942-949.
[25] [Li Juan, You Laiguang, Hu Zhijin, et al. Analysis on raindrop-size distribution characteristics of Maqu region in upper reach of Yellow River[J]. Plateau Meteorology, 2006, 25(5): 942-949. ]
[26] 王黎俊, 孙安平, 刘彩红, 等. 地基微波辐射计探测在黄河上游人工增雨中的应用[J]. 气象, 2007, 33(11): 28-33.
[26] [Wang Lijun, Sun Anping, Liu Caihong, et al. Application of ground-based microwave radiometer detection to precipitation enhancement in the upper of the Yellow River[J]. Meteorology, 2007, 33(11): 28-33. ]
[27] 王黎俊, 孙安平, 靳少波. 黄河上游河曲地区人工增雨的基本条件[J]. 西北水力发电, 2007, 23(2): 67-70.
[27] [Wang Lijun, Sun Anping, Jin Shaobo, et al. Essential conditions and catalyzing operation measures of artificial rainfall in Hequ Region, upper Yellow River[J]. Journal of Northwest Hydroelectric Power, 2007, 23(2): 67-70. ]
[28] Rutledge S A, Hobbs P V. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. viii: a model for the “seeder-feeder” process in warm-frontal rainbands[J]. Journal of the Atmospheric Sciences, 1983, 40: 1185-1206.
[29] Plummer D M, Mcfarquhar G M, Rauber R M, et al. Structure and statistical analysis of the microphysical properties of generating cells in the comma head region of continental winter cyclones[J]. Journal of the Atmospheric Sciences, 2014, 71(11): 4181-4203.
[30] 张佃国, 王烁, 郭学良, 等. 基于机载Ka 波段云雷达和粒子测量系统同步观测的积层混合云对流泡特征[J]. 大气科学, 2020, 44(5): 1023-1038.
[30] [Zhang Dianguo, Wang Shuo, Guo Xueliang, et al. The properties of convective generating cells embedded in the stratiform cloud on basis of airborne Ka-band precipitation cloud radar and droplet measurement technologies[J]. Chinese Journal of Atmospheric Sciences, 2020, 44(5): 1023-1038. ]
[31] Zhu S C, Guo X L, Lu G X, et al. Ice crystal habits and growth processes in stratiform clouds with embedded convection examined through aircraft observation in northern China[J]. Journal of the Atmospheric Sciences, 2015, 72(5): 2011-2032.
[32] 李义宇, 杨俊梅, 李培仁, 等. 山西省层状云微物理结构探测分析[J]. 气候与环境研究, 2012, 17(6): 693-703.
[32] [Li Yiyu, Yang Junmei, Li Peiren, et al. Detection analysis of microphysical structure of stratiform cloud in Shanxi Province[J]. Climatic and Environmental Research, 2012, 17(6): 693-703. ]
Outlines

/