Temporal and spatial variations of precipitation concentration degree and precipitation concentration period on the Loess Plateau from 1960 to 2019
Received date: 2022-04-11
Revised date: 2022-05-22
Online published: 2022-10-25
With global warming as a foundation, it is significantly important that the law of precipitation concentration degree (PCD) and precipitation concentration period (PCP) changes for the Loess Plateau are clarified for the conservation of regional soil and water and utilization of water resources. Based on the daily precipitation observation data compiled from 55 meteorological stations on the Loess Plateau from 1960 to 2019, the temporal and spatial variation characteristics of PCD and PCP on the Loess Plateau in the last 60 years, along with before and after the project of returning farmland to forest (grassland), were analyzed using trend analysis, spatial interpolation, and correlation analysis. The average annual precipitation, PCD, and PCI on the Loess Plateau had a decreasing (downward) trend from 1960 to 2019 according to the results. In addition, the PCD gradually weakened, and the PCI shifted to an earlier date. The spatial distribution characteristics of annual precipitation, PCD and PCI on the Loess Plateau were complex. Annual precipitation and the PCD decreased from southeast to northwest, while PCP gradually decreased from east to west. However, the difference was not significant. The variation trend of the PCP had an alternating distribution law of “decline rise decline” from northeast to southwest. Overall, the PCP had a trend of delaying in the east and advancing in the west. After the project of returning farmland to forest (grassland) was completed, the average annual precipitation increased, the PCD weakened, and the PCP was postponed. The precipitation on the Loess Plateau is distributed alternately from east to west, and its change trend is mainly more. The distribution law of PCD is “low high low” from northeast to southwest, and its variation trend is mainly low. The PCP is mainly on the high side, and the range of the high side is more in the south than the north and more in the east than the west, and the trend change is mainly on the high side. The PCD, PCI, and annual precipitation in the Loess Plateau are mainly positively correlated.
AN Bin,XIAO Weiwei,ZHU Ni,LIU Yufeng . Temporal and spatial variations of precipitation concentration degree and precipitation concentration period on the Loess Plateau from 1960 to 2019[J]. Arid Zone Research, 2022 , 39(5) : 1333 -1344 . DOI: 10.13866/j.azr.2022.05.01
[1] | 周波涛. 全球气候变暖: 浅谈从AR5到AR6的认知进展[J]. 大气科学学报, 2021, 44(5): 667-671. |
[1] | [Zhou Botao. Global warming: Scientific progress from AR5 to AR6[J]. Transactions of Atmospheric Sciences, 2021, 44(5): 667-671. ] |
[2] | IPCC. Climate Change 2021: The Physical Science Basis[M]. Cambridge: Cambridge University Press, 2021. |
[3] | 樊星, 秦圆圆, 高翔. IPCC第六次评估报告第一工作组报告主要结论解读及建议[J]. 环境保护, 2021, 49(Z2): 44-48. |
[3] | [Fan Xing, Qin Yuanyuan, Gao Xiang. Interpretation of the main conclusions and suggestions of IPCC AR6 Working Group I Report[J]. Environmental Protection, 2021, 49(Z2): 44-48. ] |
[4] | 孔锋. 透视大尺度综合自然灾害风险评估的主要进展和展望[J]. 灾害学, 2020, 35(2): 148-153. |
[4] | [Kong Feng. Perspective on the main progress and prospect of large-scale integrated natural disaster risk assessment[J]. Journal of Catastrophology, 2020, 35(2): 148-153. ] |
[5] | 黄萌田, 周佰铨, 翟盘茂. 极端天气气候事件变化对荒漠化、土地退化和粮食安全的影响[J]. 气候变化研究进展, 2020, 16(1): 17-27. |
[5] | [Huang Mengtian, Zhou Baiquan, Zhai Panmao. Impacts of extreme weather and climate events on desertification, land degradation and food security[J]. Climate Change Research, 2020, 16(1): 17-27. ] |
[6] | Held I M, Soden B J. Robust responses of the hydrological cycle to global warming[J]. Journal of Climate, 2006, 19(21): 5686-5699. |
[7] | 谢正辉, 陈思, 秦佩华, 等. 人类用水活动的气候反馈及其对陆地水循环的影响研究——进展与挑战[J]. 地球科学进展, 2019, 34(8): 801-813. |
[7] | [Xie Zhenghui, Chen Si, Qin Peihua, et al. Research on climate feedback of human water use and its impact on terrestrial water cycles: Advances and challenges[J]. Advances in Earth Science, 2019, 34(8): 801-813. ] |
[8] | 苏爱芳, 吕晓娜, 崔丽曼, 等. 郑州“7.20”极端暴雨天气的基本观测分析[J]. 暴雨灾害, 2021, 40(5): 445-454. |
[8] | [Su Aifang, Lyu Xiao’na, Cui Liman, et al. The basic observational analysis of “7.20”extreme rainstorm in Zhengzhou[J]. Torrential Rain and Disasters, 2021, 40(5): 445-454. ] |
[9] | 郑炎辉, 陈晓宏, 何艳虎, 等. 珠江流域降水集中度时空变化特征及成因分析[J]. 水文, 2016, 36(5): 22-28. |
[9] | [Zheng Yanhui, Chen Xiaohong, He Yanhu, et al. Spatial-temporal variation of precipitation concentration degree in Pearl River Basin and its causes[J]. Journal of China Hydrology, 2016, 36(5): 22-28. ] |
[10] | 孔锋, 方佳毅, 刘凡, 等. 1951—2012年中国降水集中度和集中期的时空格局[J]. 北京师范大学学报(自然科学版), 2015, 51(4): 404-411. |
[10] | [Kong Feng, Fang Jiayi, Liu Fan, et al. Variations in the spatiotemporal patterns of precipitation concentration degree and precipitation concentration period from 1951 to 2012 in China[J]. Journal of Beijing Normal University (Natural Science Edition), 2015, 51(4): 404-411. ] |
[11] | 杨军, 张会兰, 庞建壮. 嘉陵江流域降水集中度的时空变异与驱动因素研究[J]. 长江流域资源与环境, 2021, 30(4): 849-860. |
[11] | [Yang Jun, Zhang Huilan, Pang Jianzhuang. Study on spatial-temporal variation and driving factors of precipitation concentration in Jialing River Basin[J]. Resources and Environment in the Yangtze Basin, 2021, 30(4): 849-860. ] |
[12] | Zhang Lujun, Qian Yongfu. Annual distribution features of the yearly precipitation in China and their interannual variations[J]. Acta Meteorologica Sinica, 2003, 17(2): 146-163. |
[13] | 张录军, 钱永甫. 长江流域汛期降水集中程度和洪涝关系研究[J]. 地球物理学报, 2004, 51(4): 622-630. |
[13] | [Zhang Lujun, Qian Yongfu. A study on the feature of precipitation concentration and its relation to flood-producing in the Yangtze River Valley of China[J]. Chinese Journal of Geophysics, 2004, 51(4): 622-630. ] |
[14] | Martin Vide J. Spatial distribution of a daily precipitation concentration index in peninsular Spain[J]. International Journal of Climatology, 2004, 24(8): 959-971. |
[15] | Oliver J E. Monthly precipitation distribution: a comparative index[J]. Professional Geographer, 1980, 32(3): 300-309. |
[16] | Michiels P, Gabriels D, Harrmann R. Using the seasonal and temporal precipitation concentration index for characterizing the monthly rainfall distribution in Spain[J]. Catena, 1992, 19(1): 43-58. |
[17] | 王睆, 陆尔, 赵玮, 等. 一种新的反映我国降水季节内非均匀性特征的方法[J]. 热带气象学报, 2015, 31(5): 655-663. |
[17] | [Wang Huan, Lu Er, Zhao Wei, et al. A new method to reflect the intra-seasonal heterogeneity of the precipitation in China[J]. Journal of Tropical Meteorology, 2015, 31(5): 655-663. ] |
[18] | 董满宇, 王磊鑫, 李洁敏, 等. 1960—2017年滦河流域降水集中度与集中期时空变化特征[J]. 北京师范大学学报(自然科学版), 2019, 55(4): 468-475. |
[18] | [Dong Manyu, Wang Leixin, Li Jiemin, et al. Spatial-temporal variations in intra-annual precipitation concentration degree and precipitation concentration period in Luanhe River Basin from 1960-2017[J]. Journal of Beijing Normal University(Natural Science Edition), 2019, 55(4): 468-475. ] |
[19] | 叶正伟, 殷鹏. 淮河流域汛期候尺度降水集中度与集中期的时序变化特征[J]. 水土保持研究, 2018, 25(5): 295-299. |
[19] | [Ye Zhengwei, Yin Peng. Changes of precipitation concentration degree and precipitation concentration period in flood season in the Huaihe River Basin[J]. Research of Soil and Water Conservation, 2018, 25(5): 295-299. ] |
[20] | 庞欣欣. 淮河流域降水集中度和集中指数年际变化分析[J]. 长江科学院院报, 2018, 35(9): 43-47. |
[20] | [Pang Xinxin. Inter-annual variations of precipitation concentration degree and concentration index in Huaihe River Basin[J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(9): 43-47. ] |
[21] | 李志, 郑粉莉, 刘文兆. 1961—2007年黄土高原极端降水事件的时空变化分析[J]. 自然资源学报, 2010, 25(2): 291-299. |
[21] | [Li Zhi, Zheng Fenli, Liu Wenzhao. Analyzing the spatial-temporal changes of extreme precipitation events in the Loess Plateau from 1961 to 2007[J]. Journal of Natural Resources, 2010, 25(2): 291-299. ] |
[22] | 肖蓓, 崔步礼, 李东昇, 等. 黄土高原不同气候区降水时空变化特征[J]. 中国水土保持科学, 2017, 15(1): 51-61. |
[22] | [Xiao Bei, Cui Buli, Li Dongsheng, et al. Temporal and spatial variations of precipitation in different climatic regions of the Loess Plateau[J]. Science of Soil and Water Conservation, 2017, 15(1): 51-61. ] |
[23] | 李明, 邓宇莹, 曹富强, 等. 基于格点数据的黄土高原降水时空变化特征[J]. 东北师大学报(自然科学版), 2021, 53(1): 130-136. |
[23] | [Li Ming, Deng Yuying, Cao Fuqiang, et al. Spatio-temporal characteristics of precipitation in the Loess Plateau based on grid data[J]. Journal of Northeast Normal University(Natural Science Edition), 2021, 53(1): 130-136. ] |
[24] | 赵安周, 朱秀芳, 潘耀忠. 1965—2013年黄土高原地区极端降水事件时空变化特征[J]. 北京师范大学学报(自然科学版), 2017, 53(1): 43-50. |
[24] | [Zhao Anzhou, Zhu Xiufang, Pan Yaozhong. Spatiotemporal variations of extreme precipitation events in the Loess Plateau from 1965 to 2013[J]. Journal of Beijing Normal University(Natural Science Edition), 2017, 53(1): 43-50. ] |
[25] | 安彬, 肖薇薇, 张淑兰, 等. 1960—2017年黄土高原不同等级降水日数和强度时空变化特征[J]. 干旱区研究, 2021, 38(3): 714-723. |
[25] | [An Bin, Xiao Weiwei, Zhang Shulan, et al. Spatio-temporal characteristics of precipitation days and intensity with different grades in the Loess Plateau during 1961-2017[J]. Arid Zone Research, 2021, 38(3): 714-723. ] |
[26] | 刘宪锋, 任志远, 张翀, 等. 1959—2008年黄土高原地区年内降水集中度和集中期时空变化特征[J]. 地理科学进展, 2012, 31(9): 1157-1163. |
[26] | [Liu Xianfeng, Ren Zhiyuan, Zhang Chong, et al. Inhomogeneity characteristics of intra-annual precipitation on the Loess Plateau during 1959-2008[J]. Progress in Geography, 2012, 31(9): 1157-1163. ] |
[27] | 张宝庆, 田磊, 赵西宁, 等. 植被恢复对黄土高原局地降水的反馈效应研究[J]. 中国科学: 地球科学, 2021, 51(7): 1080-1091. |
[27] | [Zhang Baoqing, Tian Lei, Zhao Xining, et al. Feedbacks between vegetation restoration and local precipitation over the Loess Plateau in China[J]. Scientia Sinica(Terrae), 2021, 51(7): 1080-1091. ] |
[28] | Wang X L, Chen H, Wu Y, et al. New techniques for detection and adjustment of shifts in daily precipitation data series[J]. Journal of Applied Meteorology and Climatology, 2010, 49(12): 2416-2436. |
[29] | 徐建华. 计量地理学[M]. 第二版. 北京: 高等教育出版社, 2014. |
[29] | [Xu Jianhua. Quantitative Geography[M]. 2nd ed. Beijing: Higher Education Press, 2014. ] |
[30] | 汤国安, 杨昕. 地理信息系统空间分析实验教程[M]. 第二版. 北京: 科学出版社, 2012. |
[30] | [Tang Guo’an, Yang Xin. Experimental Course on Spatial Analysis of Geographic Information Systems[M]. 2nd ed. Beijing: Science Press, 2012. ] |
[31] | 刘焕才, 许芃, 李曼. 山西夏季不同等级降水时空演变特征及其影响要素研究[J]. 地理科学, 2021, 41(3): 544-552. |
[31] | [Liu Huancai, Xu Peng, Li Man. Spatio-temporal characteristics of summer graded precipitation and its influencing factors in Shanxi[J]. Scientia Geographica Sinica, 2021, 41(3): 544-552. ] |
[32] | 刘荔昀, 鲁瑞洁, 丁之勇, 等. 黄土高原气候变化特征及原因分析[J]. 地球环境学报, 2021, 12(6): 615-631. |
[32] | [Liu Liyun, Lu Ruijie, Ding Zhiyong, et al. Analysis of climate change characteristics and circulation factors in the Loess Plateau[J]. Journal of Earth Environment, 2021, 12(6): 615-631. ] |
[33] | Ding Zhiyong, Pu Jia, Meng Lihong, et al. Asymmetric trends of extreme temperature over the Loess Plateau during 1998-2018[J]. International Journal of Climatology, 2021, 41(S1): 1663-1685. |
[34] | 安彬, 肖薇薇, 张淑兰, 等. 1960—2017年黄土高原地表温度时空变化特征[J]. 干旱区地理, 2021, 44(3): 778-785. |
[34] | [An Bin, Xiao Weiwei, Zhang Shulan, et al. Spatial and temporal characteristics of surface temperature in the Loess Plateau during 1961-2017[J]. Arid Land Geography, 2021, 44(3): 778-785. ] |
[35] | Ren Yuling, Zhang Jingpeng, Fu Jinxia, et al. Spatiotemporally varied extreme precipitation events simultaneously controlled by multiple circulation factors in China’s Loess Plateau[J]. International Journal of Climatology, 2022: 1-22. https://doi.org/10.1002/joc.7593. |
[36] | 党维勤, 党恬敏, 张泉, 等. “7·26”暴雨调查对黄土高原水土保持工作的启示[J]. 中国水土保持, 2021, 42(3): 24-27. |
[36] | [Dang Weiqin, Dang Tianmin, Zhang Quan, et al. Enlightenment of investigation of July 26 rainstorm on soil and water conservation in Loess Plateau[J]. Soil and Water Conservation in China, 2021, 42(3): 24-27. ] |
[37] | 张家政, 李崇贵, 王涛. 黄土高原植被覆盖时空变化及原因[J]. 水土保持研究, 2022, 29(1): 224-230, 241. |
[37] | [Zhang Jiazheng, Li Chonggui, Wang Tao. Dynamic changes of vegetation coverage on the Loess Plateau and its factors[J]. Research of Soil and Water Conservation, 2022, 29(1): 224-230, 241. ] |
[38] | 张耀宗, 张勃, 张多勇, 等. 1960—2018年黄土高原地区蒸发皿蒸发时空变化特征及影响因素[J]. 干旱区研究, 2022, 39(1): 1-9. |
[38] | [Zhang Yaozong, Zhang Bo, Zhang Duoyong, et al. Spatio temporal patterns of pan evaporation from 1960 to 2018 over the Loess Plateau: Changing properties and possible causess[J]. Arid Zone Research, 2022, 39(1): 1-9. ] |
[39] | 禤键豪, 张兴福, 陈鑑华, 等. 利用COST-G GRACE时变模型反演黄土高原陆地水储量变化[J]. 大地测量与地球动力学, 2022, 42(5): 510-514. |
[39] | [Xuan Jianhao, Zhang Xingfu, Chen Jianhua, et al. Terrestrial water storage changes in the Loess Plateau based on COST-G GRACE temporal model[J]. Journal of Geodesy and Geodynamics, 2022, 42(5): 510-514. ] |
[40] | Wang Y Q, Shao M A, Zhu Y J, et al. Impacts of land use and plant characteristics on dried soil layers in different climatic regions on the Loess Plateau of China[J]. Agricultural and Forest Meteorology, 2010, 151(4) : 437-448. |
[41] | 任志艳, 延军平, 王鹏涛. 1960—2012年内蒙古降水集中度和降水集中期时空变化[J]. 中国沙漠, 2016, 36(3): 760-766. |
[41] | [Ren Zhiyan, Yan Junping, Wang Pengtao. Spatio-temporal variations of precipitation concentration degree and precipitation concentration period in Inner Mongolia[J]. Journal of Desert Research, 2016, 36(3): 760-766. ] |
[42] | Zheng Yanhui, He Yanhu, Chen Xiaohong. Spatiotemporal pattern of precipitation concentration and its possible causes in the Pearl River Basin, China[J]. Journal of Cleaner Production, 2017, 161: 1020-1031. |
/
〈 | 〉 |