| [1] |
陈颖, 邵伟玲, 曹萌, 等. 新疆夏季高温日数的变化特征及其影响因子[J]. 干旱区研究, 2020, 37(1): 58-66.
|
|
[Chen Ying, Shao Weiling, Cao Meng, et al. Variation characteristics of summer high-temperature days in Xinjiang and their influencing factors[J]. Arid Zone Research, 2020, 37(1): 58-66.]
|
| [2] |
刘璐, 刘普幸, 张旺雄, 等. 1961—2017年新疆极端暖事件变化特征及其未来情景预估[J]. 干旱区研究, 2021, 38(6): 1590-1600.
doi: 10.13866/j.azr.2021.06.11
|
|
[Liu Lu, Liu Puxing, Zhang Wangxiong, et al. Variation characteristics of extreme warm events in Xinjiang from 1961 to 2017 and their future projections[J]. Arid Zone Research, 2021, 38(6): 1590-1600.]
|
| [3] |
林晓华, 卓一林, 柳丽芳, 等. NaCl胁迫对荒漠苔藓齿肋赤藓膜结构稳定性的影响[J]. 生态学报, 2024, 44(8): 3483-3491.
|
|
[Lin Xiaohua, Zhuo Yilin, Liu Lifang, et al. Effects of NaCl stress on membrane structural stability in the desert moss Syntrichia caninervis[J]. Acta Ecologica Sinica, 2024, 44(8): 3483-3491.]
|
| [4] |
Cao T, Haxim Y, Liu X J, et al. ScATG8 gene cloned from desert moss Syntrichia caninervis exhibits multiple stress tolerance[J]. Plants, 2024, 13(1): 59.
|
| [5] |
聂华丽, 吴楠, 梁少民, 等. 不同沙埋深度对刺叶墙藓植株碎片生长的影响[J]. 干旱区研究, 2006, 23(1): 66-70.
|
|
[Nie Huali, Wu Nan, Liang Shaomin, et al. Effects of different sand burial sepths on the growth of Bryum argenteum fragments[J]. Arid Zone Research, 2006, 23(1): 66-70.]
|
| [6] |
马瑞. 荒漠齿肋赤藓抗旱基因ScALDH21、Sc288对干旱胁迫的响应[D]. 长沙: 中南林业科技大学, 2011.
|
|
[Ma Rui. Response of Drought Resistance Genes ScALDH21 and Sc288 in Desert Moss Syn-trichia caninervis to Drought Stress[D]. Changsha: Central South University of Forestry and Technology, 2011.]
|
| [7] |
杨红兰, 张道远, 刘燕, 等. 齿肋赤藓乙醛脱氢酶基因ALDH21的克隆与表达分析[J]. 基因组学与应用生物学, 2010, 29(1): 24-30.
|
|
[Yang Honglan, Zhang Daoyuan, Liu Yan, et al. Cloning and expression analysis of the aldehyde dehydrogenase gene ALDH21 in Syntrichia caninervis[J]. Genomics and Applied Biology, 2010, 29(1): 24-30.]
|
| [8] |
Liang Y, Li X, Yang R, et al. BaDBL1, a unique DREB gene from desiccation tolerant moss Bryum argenteum, confers osmotic and salt stress tolerances in transgenic Arabidopsis[J]. Plant Sciences, 2021, 313: 111047.
|
| [9] |
韩志立, 尹本丰, 杨孜悦, 等. 积雪变化对温带荒漠齿肋赤藓结皮土壤磷组分的影响[J]. 生态学报, 2024, 44(16): 7119-7129.
|
|
[Han Zhili, Yin Benfeng, Yang Ziyue, et al. Effects of snow cover change on phosphorus fractions in syntrichia caninervis crust soil in temperate deserts[J]. Acta Ecologica Sinica, 2024, 44(16): 7119-7129.]
|
| [10] |
Li X, Bai W, Yang Q, et al. The extremotolerant desert moss Syntrichia caninervis is a promising pioneer plant for colonizing extraterrestrial environments[J]. The Innovation, 2024, 5(4): 100657.
|
| [11] |
Mao Y, Liu W, Yang X, et al. Syntrichia caninervis adapt to mercury stress by altering submicrostructure and physiological properties in the Gurbantünggüt Desert[J]. Scientific Reports, 2022, 12(1): 11717.
|
| [12] |
Bai W, Salih H, Yang R, et al. ScDREBA5 enhances cold tolerance by regulating photosynthetic and antioxidant genes in the desert moss Syntrichia caninervis[J]. Plant, Cell & Environment, 2025, 48(5): 3293-3313.
|
| [13] |
Salih H, Bai W, Liang Y, et al. ROS scavenging enzyme-encoding genes play important roles in the desert moss Syntrichia caninervis response to extreme cold and desiccation stresses[J]. International Journal of Biological Macromolecules, 2024, 254: 127778.
|
| [14] |
Li H, Zhang D, Li X, et al. Novel DREB A-5 subgroup transcription factors from desert moss (Syntrichia caninervis) confers multiple abiotic stress tolerance to yeast[J]. Journal of Plant Physiology, 2016, 194: 45-53.
|
| [15] |
Li X, Yang R, Liang Y, et al. The ScAPD1-like gene from the desert moss Syntrichia caninervis enhances resistance to Verticillium dahliae via phenylpropanoid gene regulation[J]. The Plant Journal, 2023, 113(1): 75-91.
|
| [16] |
Li X, Zhang D, Gao B, et al. Transcriptome-wide identification, classification, and characterization of AP2/ERF family genes in the desert moss Syntrichia caninervis[J]. Frontiers in Plant Science, 2017, 8:262.
|
| [17] |
Liang Y, Li X, Zhang D, et al. ScDREB8, a novel A-5 type of DREB gene in the desert moss Syntrichia caninervis, confers salt tolerance to Arabidopsis[J]. Plant Physiol Biochem, 2017, 120: 242-251.
|
| [18] |
Li X, Liang Y, Gao B, et al. ScDREB10, an A-5c type of DREB gene of the desert moss Syntrichia caninervis, confers osmotic and salt tolerances to Arabidopsis[J]. Genes, 2019, 10(2): 146.
|
| [19] |
Yang R, Li X, Yang Q, et al. Transcriptional profiling analysis providing insights into desiccation tolerance mechanisms of the desert moss Syntrichia caninervis[J]. Frontiers in Plant Science, 2023, 14: 1127541.
|
| [20] |
Silva A T, Gao B, Fisher K M, et al. To dry perchance to live: Insights from the genome of the desiccation-tolerant biocrust moss Syntrichia caninervis[J]. The Plant Journal, 2021, 105(5): 1339-1356.
|
| [21] |
薛山. 新疆特色沙漠植物齿肋赤藓热胁迫响应关键基因的筛选与分析[D]. 石河子: 石河子大学, 2024.
|
|
[Xue Shan. Screening and Analysis of Key Genes Responding to Heat Stress in the Xinjiang Desert Plant Syntrichia caninervis[D]. Shihezi: Shihezi University, 2024.]
|
| [22] |
梁玉青, 李小双, 高贝, 等. 基于RNA-Seq数据筛选的银叶真藓耐干相关基因表达模式研究[J]. 植物生理学报, 2017, 53(3): 388-396.
|
|
[Liang Yuqing, Li Xiaoshuang, Gao Bei, et al. Study on the expression patterns of desiccation-tolerance related genes in Bryum argenteum based on RNA-Seq data screening[J]. Journal of Plant Physiology, 2017, 53(3): 388-396.]
|
| [23] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT Method[J]. Methods, 2001, 25(4): 402-408.
doi: 10.1006/meth.2001.1262
pmid: 11846609
|
| [24] |
宋士伟, 焦德志, 陈旭, 等. 野大麦对干旱胁迫的生理响应与转录组分析[J]. 干旱区研究, 2019, 36(4): 909-915.
doi: 10.13866/j.azr.2019.04.15
|
|
[Song Shiwei, Jiao Dezhi, Chen Xu, et al. Physiological responses and transcriptome analysis of wild barley (Hordeum brevisubulatum) under drought stress[J]. Arid Zone Research, 2019, 36(4): 909-915.]
doi: 10.13866/j.azr.2019.04.15
|
| [25] |
Hayford R K, Serba D D, Xie S, et al. Global analysis of switchgrass (Panicum virgatum L.) transcriptomes in response to interactive effects of drought and heat stresses[J]. BMC Plant Biology, 2022, 22(1): 107.
doi: 10.1186/s12870-022-03477-0
pmid: 35260072
|
| [26] |
Ji W, Zhu Y, Li Y, et al. Over-expression of a glutathione S-transferase gene, GsGST, from wild soybean (Glycine soja) enhances drought and salt tolerance in transgenic tobacco[J]. Biotechnology Letters, 2010, 32(8): 1173-1179.
|
| [27] |
Xu J, Xing X J, Tian Y S, et al. Transgenic Arabidopsis plants expressing tomato glutathione S-Transferase showed enhanced resistance to salt and drought stress[J]. PLoS One, 2015, 10(9): e0136960.
|
| [28] |
Khan A H, Wu Y, Luo L, et al. Proteomic analysis reveals that the heat shock proteins 70-17 and BiP5 enhance cotton male fertility under high-temperature stress by reducing the accumulation of ROS in anthers[J]. Industrial Crops and Products, 2022, 188(B): 115693.
|
| [29] |
Magar M M, Liu H, Yan G. Genome-wide analysis of AP2/ERF superfamily genes in contrasting wheat genotypes reveals heat stress-related candidate genes[J]. Frontiers in Plant Science, 2022, 13: 853086.
|
| [30] |
Pratyusha D S, Sarada D V L. MYB transcription factors-master regulators of phenylpropanoid biosynthesis and diverse developmental and stress responses[J]. Plant Cell Reports, 2022, 41(12): 2245-2260.
doi: 10.1007/s00299-022-02927-1
pmid: 36171500
|
| [31] |
Wang F, Ren X, Zhang F, et al. A R2R3-type MYB transcription factor gene from soybean, GmMYB12, is involved in flavonoids accumulation and abiotic stress tolerance in transgenic Arabidopsis[J]. Plant Biotechnology Reports, 2019, 13(3): 219-233.
|
| [32] |
Shukla R K, Tripathi V, Jain D, et al. CAP2 enhances germination of transgenic tobacco seeds at high temperature and promotes heat stress tolerance in yeast[J]. The FEBS Journal, 2009, 276(18): 5252-5262.
|
| [33] |
Li X, Lu J, Zhu X, et al. AtMYBS1 negatively regulates heat tolerance by directly repressing the expression of MAX1 required for strigolactone biosynthesis in Arabidopsis[J]. Plant Communications, 2023, 4(6): 100675.
|
| [34] |
黄畋柳, 张锐, 贺迎骁, 等. 辣椒NAC家族成员鉴定及其编码基因在NaCl胁迫下的表达分析[J]. 植物资源与环境学报, 2023, 32(4): 12-24.
|
|
[Huang Tianliu, Zhang Rui, He Yingxiao, et al. Identification of NAC family members in pepper and expression analysis of their encoding genes under NaCl stress[J]. Journal of Plant Resources and Environment, 2023, 32(4): 12-24.]
|
| [35] |
Reddy P S, Kavi Kishor P B, Seiler C, et al. Unraveling regulation of the small heat shock proteins by the heat shock factor HvHsfB2c in barley: Its implications in drought stress response and seed development[J]. PLoS One, 2014, 9(3): e89125.
|
| [36] |
Si W, Liang Q, Chen L, et al. Ectopic overexpression of maize heat stress transcription factor ZmHsf05 confers drought tolerance in transgenic rice[J]. Genes, 2021, 12(10): 1568.
|