Arid Zone Research ›› 2023, Vol. 40 ›› Issue (6): 937-948.doi: 10.13866/j.azr.2023.06.09
• Land and Water Resources • Previous Articles Next Articles
XUE Dongyuan1(),HU Haizhu1,2(),ZHANG Jinning1,REN Jiawei1
Received:
2022-10-13
Revised:
2023-02-11
Online:
2023-06-15
Published:
2023-06-21
XUE Dongyuan, HU Haizhu, ZHANG Jinning, REN Jiawei. Response mechanisms of nitrate and ammonia nitrogen concentrations to hydrological processes in the riparian hyporheic zone of pastoral areas[J].Arid Zone Research, 2023, 40(6): 937-948.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 2
Parameter sensitivity analysis results of the established model"
参数增量 | |||||||
---|---|---|---|---|---|---|---|
10% | 20% | 40% | 10% | 20% | 40% | ||
纵向弥散度αL | 0.011 | 0.029 | 0.067 | 0.007 | 0.013 | 0.035 | |
横向弥散度αT | 0.001 | 0.003 | 0.007 | 0.001 | 0.001 | 0.002 | |
分子扩散系数D0 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
1.029 | 1.410 | 2.642 | - | - | - | ||
- | - | - | 0.467 | 0.683 | 1.131 |
[1] |
Dodds W, Smith V. Nitrogen, phosphorus, and eutrophication in streams[J]. Inland Waters, 2016, 6(2): 155-164.
doi: 10.5268/IW |
[2] | 邹凯波, 张玉虎, 刘晓伟, 等. 气候变化下乌伦古河流域农业面源污染负荷响应[J]. 干旱区研究, 2022, 39(2): 625-637. |
[Zou Kaibo, Zhang Yuhu, Liu Xiaowei, et al. Response of agricultural nonpoint source pollution load in the Ulungur River basin under climate change[J]. Arid Zone Research, 2022, 39(2): 625-637.] | |
[3] |
Stutter M, Baggaley N, hUallacháin Ó D, et al. The utility of spatial data to delineate river riparian functions and management zones: A review[J]. Science of the Total Environment, 2021, 757: 143982.
doi: 10.1016/j.scitotenv.2020.143982 |
[4] |
Boano F, Harvey J W, Marion A, et al. Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications[J]. Reviews of Geophysics, 2014, 52(4): 603-679.
doi: 10.1002/2012RG000417 |
[5] | 杜尧, 马腾, 邓娅敏, 等. 潜流带水文-生物地球化学: 原理、方法及其生态意义[J]. 地球科学, 2017, 42(5): 661-373. |
[Du Yao, Ma Teng, Deng Yamin, et al. Hydro-biogeochemistry of hyporheic zone: principles, methods and ecological significance[J]. Earth Science, 2017, 42(5): 661-373.] | |
[6] | 朱新丽, 金光球, 姜启豪, 等. 侧向潜流交换水动力过程及生态环境效应[J]. 水利水电科技进展, 2017, 37(3): 15-21. |
[Zhu Xinli, Jin Guangqiu, Jiang Qihao, et al. Processes of lateral hyporheic exchange and its eco-environment effects[J]. Advances in Science and Technology of Water Resources, 2017, 37(3): 15-21.] | |
[7] | Du X, Li X, Hao S, et al. Contrasting patterns of nutrient dynamics during different storm events in a semi-arid catchment of northern China[J]. Water Science & Technology, 2014, 69(12): 2533-2540. |
[8] | 包鑫, 江燕, 胡羽聪. 潮河流域降雨径流事件污染物输出特征[J]. 环境科学, 2021, 42(7): 3317-3327. |
[Bao Xin, Jiang Yan, Hu Yucong, et al. Characteristics of pollutant dynamics under rainfall-runoff events in the chaohe river watershed[J]. Environmental Science, 2021, 42(7): 3317-3327.] | |
[9] |
Baker E B, Showers W J. Hysteresis analysis of nitrate dynamics in the Neuse River, NC[J]. Science of the Total Environment, 2019, 652: 889-899.
doi: 10.1016/j.scitotenv.2018.10.254 |
[10] | 李文超, 雷秋良, 翟丽梅. 流域氮素主要输出途径及变化特征[J]. 环境科学, 2018, 39(12): 5375-5382. |
[Li Wenchao, Lei Qiuliang, Zhuo Limei. Seasonal changes of the pathways of nitrogen export from an agricultural watershed in China[J]. Environmental Science, 2018, 39(12): 5375-5382.] | |
[11] |
Trauth N, Schmidt C, Vieweg M, et al. Hyporheic transport and biogeochemical reactions in pool-riffle systems under varying ambient groundwater flow conditions[J]. Journal of Geophysical Research: Biogeosciences, 2014, 119(5): 910-928.
doi: 10.1002/2013JG002586 |
[12] | Darwiche-Criado N, Comín F A, Sorando R, et al. Seasonal variability of NO3- mobilization during flood events in a Mediterranean catchment: The influence of intensive agricultural irrigation[J]. Agriculture, Ecosystems & Environment, 2015, 200: 208-218. |
[13] | 胡晓冕, 李艳利, 孙伟, 等. 不同水文期太子河上游区域河流硝酸盐来源识别[J]. 水土保持研究, 2021, 28(2): 7-20. |
[Hu Xiaomian, Li Yanwei, Sun Wei, et al. Identification of nitrate sources in upstream areas of Taizi River Basin in different hydrological periods[J]. Research of Soil and Water Conservation, 2021, 28(2): 7-20.] | |
[14] |
Wang Z J, Li S L, Yue F J, et al. Rainfall driven nitrate transport in agricultural karst surface river system: Insight from high resolution hydrochemistry and nitrate isotopes[J]. Agriculture, Ecosystems & Environment, 2020, 291: 106787.
doi: 10.1016/j.agee.2019.106787 |
[15] | 潘俊, 李瑞昉, 孟祥焘, 等. 傍河开采驱动下潜流带氮素迁移转化的生物地球化学特征[J]. 环境工程, 2021, 39(8): 62-68. |
[Pan Jun, Li Ruifang, Meng Xiangtao, et al. Biogeochemical characteristics of nitrogen migration and transformation in subsurface flow belt driven by river collection[J]. Environmental Engineering, 2021, 39(8): 62-68.] | |
[16] |
Duncan J M, Groffman P M, Band L E. Towards closing the watershed nitrogen budget: Spatial and temporal scaling of denitrification[J]. Journal of Geophysical Research: Biogeosciences, 2013, 118(3): 1105-1119.
doi: 10.1002/jgrg.v118.3 |
[17] | 张彦隆, 林玲, 王飞飞, 等. 九龙江河流-河口连续体氮素的主要去除过程及N2O排放特征[J]. 厦门大学学报(自然科学版), 2021, 60(2): 382-389. |
[Zhang Yanlong, Lin Ling, Wang Feifei, et al. Typical nitrogen removal and N2O emission features in river-estuary continuum of the Jiulong River[J]. Journal of Xiamen University(Natural Science), 2021, 60(2): 382-389.] | |
[18] | 王佳琪, 马瑞, 孙自永. 地表水与地下水相互作用带中氮素污染物的反应迁移机理及模型研究进展[J]. 地质科技情报, 2019, 38(4): 270-280. |
[Wang Jiaqi, Ma Rui, Sun Ziyong. Reactive transport and model of nitrogen pollutants in the surface water-ground water interaction zones:A review[J]. Geology Science and Technology Information, 2019, 38(4): 270-280.] | |
[19] | 蔡奕, 邢婧文, 阮西科, 等. 河流潜流带氮素迁移转化数值模拟研究进展[J]. 水资源保护, 2023, 39(1): 181-189. |
[Cai Yi, Xing Jingwen, Yuan Xike, et al. Advances in the numerical simulation of the migration and transformation of nitrogen in hyporheic zones of rivers[J]. Water Resources Protection, 2023, 39(1): 181-189.] | |
[20] | Koskinen L, Laitinen M, Lofman J, et al. FEFLOW: A finite element code for simulating groundwater flow, heat transfer and solute transport[J]. Transactions on Ecology and the Environment, 1996, 10: 287-296. |
[21] | 李清海. 锡林河地表水资源年际变化浅析[J]. 人民黄河, 2021, 43(s2): 57-58. |
[Li Qinghai. Analysis on interannual changes of surface water resources in Xilin River[J]. Yellow River, 2021, 43(s2): 57-58.] | |
[22] | 王则宇, 崔向新, 蒙仲举, 等. 风水复合侵蚀下锡林河流域不同管理方式草地表土粒度特征[J]. 土壤, 2018, 50(4): 819-825. |
[Wang Zeyu, Cui Xiangxin, Meng Zhongju, et al. Different management modes in Xilin River Basin under the combined erosion of wind and water grain size characteristics of grassland topsoil[J]. Soils, 2018, 50(4): 819-825.] | |
[23] | HJ 636─2012 水质总氮的测定碱性过硫酸钾消解紫外分光光度法[S]. 北京: 中国环境出版社, 2012. |
[HJ 636─2012 Water Quality-Determination of Total Nitrogen-Alkaline Potassium Persulfate Digestion UV Spectrophotometric Method[S]. Beijing: China Environmental Science Press, 2012.] | |
[24] | HJ 535─2009 水质氨氮的测定纳氏试剂分光光度法[S]. 北京: 中国环境出版社, 2009. |
[HJ 535─2009 Water Quality-Determination of Ammonia Nitrogen-Nessler’s Reagent Spectrophotometry[S]. Beijing: China Environmental Science Press, 2009.] | |
[25] | HJ/T 346─2007 水质硝酸盐氮的测定紫外分光光度法(试行)[S]. 北京: 中国环境出版社, 2007. |
[HJ/T 346─2007 Water Quality-Determination of Nitrate-Nitrogen-Ultraviolet Spectrophotometry[S]. Beijing: China Environmental Science Press, 2007.] | |
[26] |
Li J, Mao X, Li M. Modeling hydrological processes in oasis of Heihe River Basin by landscape unit-based conceptual models integrated with FEFLOW and GIS[J]. Agricultural Water Management, 2017, 179: 338-351.
doi: 10.1016/j.agwat.2016.09.007 |
[27] |
Hu H, Binley A, Heppell C M, et al. Impact of microforms on nitrate transport at the groundwater-surface water interface in gaining streams[J]. Advances in Water Resources, 2014, 73: 185-197.
doi: 10.1016/j.advwatres.2014.07.013 |
[28] | 王红越, 任莞露, 王润博, 等. 锡林河流域潜在异养硝化-好氧反硝化菌群的陆向分异及影响因素[J]. 环境科学学报, 2023, 43(3): 478-489. |
[Wang Hongyue, Ren Wanlu, Wang Runbo, et al. Landward differentiation and influencing factors of heterotrophic nitrification-aerobic denitrification bacterial populations in Xilin River Basin[J]. Acta Scientiae Circumstantiae, 2023, 43(3): 478-489.] | |
[29] | 于景丽, 夏晶晶, 李传虹, 等. 锡林河流域Nitrospira的生态位分化及环境驱动力[J]. 微生物学通报, 2020, 47(5): 1418-1429. |
[Yu Jingli, Xia Jingjing, Li Chuanhong, et al. Niche differentiation of nitrospira and associated environmental driving forces in Xilin River Basin[J]. Microbiology China, 2020, 47(5): 1418-1429.] | |
[30] | 芦燕, 曾静, 赵吉, 等. 典型草原区不同生境反硝化菌群的空间特征[J]. 微生物学通报, 2019, 46(4): 707-720. |
[Lu Yan, Zeng Jing, Zhao Ji, et al. Spatial characteristics of denitrifying bacterial communities in different habitats from typical steppe[J]. Microbiology China, 2019, 46(4): 707-720.] | |
[31] |
Zarnetske J P, Haggerty R, Wondzell S M. Coupling multiscale observations to evaluate hyporheic nitrate removal at the reach scale[J]. Freshwater Science, 2015, 34(1): 172-186.
doi: 10.1086/680011 |
[32] | 田炳燚, 胡海珠, 许丽萍, 等. 半干旱草原河流与地下水交互作用的季节性变化特征[J]. 干旱区资源与环境, 2021, 35(9): 118-125. |
[Tian Bingyi, Hu Haizhu, Xu Liping, et al. Seasonal variation characteristics of interaction between rivers and groundwater in semi-arid grassland[J]. Journal of Arid Land Resources and Environment, 2021, 35(9): 118-125.] | |
[33] | 陈皓月, 胡海珠, 任嘉伟, 等. 草原曲流河垂向潜流交换及其氮素迁移转化[J/OL]. 地球科学: 1-20[2023-05-10]. http://kns.cnki.net/kcms/detail/42.1874.P.20211228.1010.008.html. |
[Chen Haoyue, Hu Haizhu, Ren Jiawei, et al. Vertical hyporheic exchange and nitrogen transport and transformation in prairie meandering rivers[J]. Earth Science: https://kns.cnki.net/kcms/detail/42.1874.P.20211228.1010.008.html.] | |
[34] | 张昌新. 基于Hvorslev模型的微水试验应用[J]. 铁道勘察, 2016, 42(2): 16-20. |
[Zhang Changxin. Application of slug testing based on Hvorslev mode[J]. Railway Investigation and Surveying, 2016, 42(2): 16-20.] | |
[35] | 李小龙, 杨广, 何新林, 等. 玛纳斯河流域地下水水位变化及水量平衡研究[J]. 水文, 2016, 36(4): 85-92. |
[Li Xiaolong, Yang Guang, He Xinlin, et al. Study on groundwater level change and water balance in Manas River Basin[J]. Journal of China Hydrology, 2016, 36(4): 85-92.] | |
[36] |
高志鹏, 郭华明, 屈吉鸿, 等. 卫河流域河流-地下水流系统氮素运移的数值模拟[J]. 地学前缘, 2018, 25(3): 273-284.
doi: 10.13745/j.esf.yx.2017-12-22 |
[Gao Zhipeng, Guo Huaming, Qu Jihong, et al. Numerical simulation of nitrogen transport in river-ground system in the Weihe River Basin[J]. Earth Science Frontiers, 2018, 25(3): 273-284.]
doi: 10.13745/j.esf.yx.2017-12-22 |
|
[37] |
李劭宁, 贾晓鹏. 格尔木河222Rn同位素变化及其对地表水-地下水交互关系的指示意义[J]. 冰川冻土, 2021, 43(4): 1190-1199.
doi: 10.7522/j.issn.1000-0240.2021.0076 |
[Li Shaoning, Jia Xiaopeng. Variability of 222Rn in Golmud River and its implication for surface-groundwater interaction[J]. Journal of Glaciology and Geocryology, 2021, 43(4): 1190-1199.]
doi: 10.7522/j.issn.1000-0240.2021.0076 |
|
[38] |
Hester E T, Hammond B, Scott D T. Effects of inset floodplains and hyporheic exchange induced by in-stream structures on nitrate removal in a headwater stream[J]. Ecological Engineering, 2016, 97: 452-464.
doi: 10.1016/j.ecoleng.2016.10.036 |
[39] |
Boyer E W, Alexander R B, Parton W J, et al. Modeling denitrification in terrestrial and aquatic ecosystems at regional scales[J]. Ecological Applications, 2006, 16(6): 2123-2141.
doi: 10.1890/1051-0761(2006)016[2123:MDITAA]2.0.CO;2 |
[40] |
Briggs M A, Lautz L K, Hare D K, et al. Relating hyporheic fluxes, residence times, and redox-sensitive biogeochemical processes upstream of beaver dams[J]. Freshwater Science, 2013, 32(2): 622-641.
doi: 10.1899/12-110.1 |
[41] |
Kunz J V, Annable M D, Rao S, et al. Hyporheic passive flux meters reveal inverse vertical zonation and high seasonality of nitrogen processing in an anthropogenically modified stream (Holtemme, Germany)[J]. Water Resources Research, 2017, 53(12): 10155-10172.
doi: 10.1002/wrcr.v53.12 |
[42] |
McLaughlin K, Nezlin N P, Howard M D A, et al. Rapid nitrification of wastewater ammonium near coastal ocean outfalls, Southern California, USA[J]. Estuarine, Coastal and Shelf Science, 2017, 186: 263-275.
doi: 10.1016/j.ecss.2016.05.013 |
[43] | Darwiche-Criado N, Comín F A, Sorando R, et al. Seasonal variability of NO3- mobilization during flood events in a Mediterranean catchment: The influence of intensive agricultural irrigation[J]. Agriculture, Ecosystems & Environment, 2015, 200: 208-218. |
[44] |
Kawagoshi Y, Suenaga Y, Chi N L, et al. Understanding nitrate contamination based on the relationship between changes in groundwater levels and changes in water quality with precipitation fluctuations[J]. Science of the Total Environment, 2019, 657: 146-153.
doi: 10.1016/j.scitotenv.2018.12.041 |
[45] | 陈红光, 孟凡浩, 萨楚拉, 等. 北方牧区草原内陆河流域径流演变特征及其驱动因素分析[J]. 干旱区研究, 2023, 40(1): 39-50. |
[Chen Hongguang, Meng Fanhao, Sa Chula, et al. Analysis of the characteristics of runoff evolution and its driving factors in a typical inland river basin in arid regions[J]. Arid Zone Research, 2023, 40(1): 39-50.] | |
[46] | Mao W, Zhu Y, Wu J, et al. Modelling the salt accumulation and leaching processes in arid agricultural areas with a new mass balance model[J]. Journal of Hydrology, 2020, 591(125392). |
[47] |
Jiang R, Woli K P, Kuramochi K, et al. Hydrological process controls on nitrogen export during storm events in an agricultural watershed[J]. Soil Science and Plant Nutrition, 2010, 56(1): 72-85.
doi: 10.1111/j.1747-0765.2010.00456.x |
[48] |
Lamontagne S, Cosme F, Minard A, et al. Nitrogen attenuation, dilution and recycling in the intertidal hyporheic zone of a subtropical estuary[J]. Hydrology and Earth System Sciences, 2018, 22(7): 4083-4096.
doi: 10.5194/hess-22-4083-2018 |
[49] |
Lloyd C E M, Freer J E, Johnes P J, et al. Using hysteresis analysis of high-resolution water quality monitoring data, including uncertainty, to infer controls on nutrient and sediment transfer in catchments[J]. Science of the Total Environment, 2016, 543: 388-404.
doi: 10.1016/j.scitotenv.2015.11.028 |
[50] |
Liu S, Chui T F M. Impacts of different rainfall patterns on hyporheic zone under transient conditions[J]. Journal of Hydrology, 2018, 561: 598-608.
doi: 10.1016/j.jhydrol.2018.04.019 |
[51] |
Shen S, Ma T, Du Y, et al. Temporal variations in groundwater nitrogen under intensive groundwater/surface-water interaction[J]. Hydrogeology Journal, 2019, 27(5): 1753-1766.
doi: 10.1007/s10040-019-01952-x |
[52] |
Perovic M, Obradovic V, Kovacevic S, et al. Indicators of groundwater potential for nitrate transformation in a reductive environment[J]. Water Environment Research, 2017, 89(1): 4-16.
doi: 10.2175/106143016X14733681696121 pmid: 28236824 |
[53] |
Di H J, Cameron K C. Nitrate leaching losses and pasture yields as affected by different rates of animal urine nitrogen returns and application of a nitrification inhibitor-a lysimeter study[J]. Nutrient Cycling Agroecosystems, 2007, 79: 281-290.
doi: 10.1007/s10705-007-9115-5 |
[54] |
Hoogendoorn C J, Betteridge K, Ledgard S F, et al. Nitrogen leaching from sheep-cattle-and deer-grazed pastures in the Lake Taupo catchment in New Zealand[J]. Animal Production Science, 2011, 51: 416-425.
doi: 10.1071/AN10179 |
[55] |
Groeschke M, Kumar P, Winkler A, et al. The role of agricultural activity for ammonium contamination at a riverbank filtration site in central Delhi (India)[J]. Environmental Earth Sciences, 2016, 75(129): 1-14.
doi: 10.1007/s12665-015-4873-x |
[56] |
Anderson T R, Groffman P M, Kaushal S S, et al. Shallow groundwater denitrification in riparian zones of a headwater agricultural landscape[J]. Journal of Environmental Quality, 2014, 43(2): 732-744.
doi: 10.2134/jeq2013.07.0303 pmid: 25602674 |
[57] |
Hefting M M, Clement J-C, Bienkowski P, et al. The role of vegetation and litter in the nitrogen dynamics of riparian buffer zones in Europe[J]. Ecological Engineering, 2005, 24(5): 465-482.
doi: 10.1016/j.ecoleng.2005.01.003 |
[58] |
Zuazo V H D, Raya A M, Ruiz J A. Nutrient losses by runoff and sediment from the taluses of orchard terraces[J]. Water, Air, and Soil Pollution, 2004, 153: 355-373.
doi: 10.1023/B:WATE.0000019956.17314.88 |
[59] |
王芳芳, 徐欢, 李婷, 等. 放牧对草地土壤氮素循环关键过程的影响与机制研究进展[J]. 应用生态学报, 2019, 30(10): 3277-3284.
doi: 10.13287/j.1001-9332.201910.021 |
[Wang Fangfang, Xu Huan, Li Ting, et al. Effects and mechanisms of grazing on key processes of soil nitrogen cycling in grassland: A review[J]. Chinese Journal of Applied Ecology, 2019, 30(10): 3277-3284.]
doi: 10.13287/j.1001-9332.201910.021 |
[1] | . Analysis of drought evolution in the Xilin River Basin based on Standardized Precipitation Evapotranspiration Index [J]. Arid Zone Research, 2020, 37(4): 819-829. |
|