Arid Zone Research ›› 2023, Vol. 40 ›› Issue (5): 785-797.doi: 10.13866/j.azr.2023.05.11
• Plant Ecology • Previous Articles Next Articles
YAN Qing1(),LI Juyan2,YIN Zhongdong1(),LIU Jinmiao1,LIU Hongcai1
Received:
2022-12-14
Revised:
2023-02-06
Online:
2023-05-15
Published:
2023-05-30
YAN Qing, LI Juyan, YIN Zhongdong, LIU Jinmiao, LIU Hongcai. Numerical simulation of the influence of typical shrub types on wind-sand flow field[J].Arid Zone Research, 2023, 40(5): 785-797.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | 黄富祥, 王明星, 王跃思. 植被覆盖对风蚀地表保护作用研究的某些新进展[J]. 植物生态学报, 2002, 26(5): 627-633. |
[Huang Fuxiang, Wang Mingxing, Wang Yuesi. Recent progress on the research of vegetation[J]. Acta Phytoecologica Sinica, 2002, 26(5): 627-633. ] | |
[2] | Wolfe S A, Nickling W G. The protective role of sparse vegetation in wind erosion[J]. Progress in Physical Geography, 1993, 17(1): 50-68. |
[3] |
Gross G. A numerical study of the air flow within and around a single tree[J]. Boundary-layer Meteorology, 1987, 40(4): 311-327.
doi: 10.1007/BF00116099 |
[4] |
亢力强, 杨智成, 张军杰, 等. 两种柔性植株地表风速廓线特征比较的风洞模拟[J]. 中国沙漠, 2020, 40(2): 43-49.
doi: 10.7522/j.issn.1000-694X.2019.00096 |
[Kang Liqiang, Yang Zhicheng, Zhang Junjie, et al. Wind tunnel simulation for comparison of wind velocity profile characteristics at two flexible plant surfaces[J]. Journal of Desert Research, 2020, 40(2): 43-49. ]
doi: 10.7522/j.issn.1000-694X.2019.00096 |
|
[5] |
Abbas M, Deirdre D, Dong Z B. The response of live plants to airflow Implication for reducing erosion[J]. Aeolian Research, 2018, 33(8): 93-105.
doi: 10.1016/j.aeolia.2018.06.002 |
[6] | 李正农, 余世斌, 吴红华, 等. 强风作用下树木周围流场的数值模拟研究[J]. 中南大学学报(自然科学版), 2021, 52(11): 3970-3980. |
[Li Zhengnong, Yu Shibin, Wu Honghua, et al. Numerical simulation of flow field around the tree in strong wind[J]. Journal of Central South University (Science and Technology), 2021, 52(11): 3970-3980. ] | |
[7] |
Liu C C, Zheng Z Q, Cheng H, et al. Airflow around single and multiple plants[J]. Agricultural and Forest Meteorology, 2018, 252(4): 27-38.
doi: 10.1016/j.agrformet.2018.01.009 |
[8] | 屈志强, 刘连友, 吕艳丽. 沙生植物构型及其与抗风蚀能力关系研究综述[J]. 生态学杂志, 2011, 30(2): 357-362. |
[Qu Zhiqiang, Liu Lianyou, Lv Yanli. Psammophyte architecture and its relations with anti-wind erosion capability[J]. Chinese Journal of Ecology, 2011, 30(2): 357-362. ] | |
[9] | 程锋梅, 李生宇, 郑伟, 等. 3类典型株型草本植物对沙面风蚀抑制作用的研究[J]. 干旱区研究, 2022, 39(5): 1526-1533. |
[Cheng Fengmei, Li Shengyu, Zheng Wei, et al. Study on wind erosion inhibition of three typical herbaceous plants on sand surface[J]. Arid Zone Research, 2022, 39(5): 1526-1533. ] | |
[10] | 张文, 亢力强, 张琴, 等. 植株形态对单植株前后风速变化影响的风洞实验[J]. 北京师范大学学报(自然科学版), 2020, 56(4): 573-581. |
[Zhang Wen, Kang Liqiang, Zhang Qin, et al. Speed upwind and downwind of a single plant[J]. Journal of Beijing Normal University (Natural Science), 2020, 56(4): 573-581. ] | |
[11] | 刘虎俊, 王多泽, 袁宏波, 等. 灌木构型与其积沙效能关系的野外观测[C] //鄂尔多斯: 中国治沙暨沙业学会, 中国林业教育学会. 《联合国防治荒漠化公约》第十三次缔约大会“防沙治沙与精准扶贫”边会论文集, 2017: 35-41. |
[Liu Hujun, Wang Duoze, Yuan Hongbo, et al. A field observation on accumulation ability of sand with shrub bifurcation structure[C] //Ordos: China National Sand Control and Desert Industry Society, China Education Association of Forestry. Proceedings of the 13th Conference of the Parties to the United Nations Convention to Combat Desertification on “Desertification Prevention and Control and Targeted Poverty Alleviation”, 2017: 35-41. ] | |
[12] | 刘芳. 乌兰布和沙区的植物资源[J]. 内蒙古师大学报(自然科学汉文版), 2000, 29(3): 215-220. |
[Liu Fang. Study on plant resources in Ulan Buh Desert[J]. Journal of Inner Mongolia Normal University (Natural Science Edition), 2000, 29(3): 215-220. ] | |
[13] | 张奕. 乌兰布和沙区典型灌木的防风阻沙效益[D]. 北京: 北京林业大学, 2021. |
[Zhang Yi. Wind Prevention and Sand Resistance of Typical Shrubs in Ulan Buh Desert[D]. Beijing: Beijing Forestry University, 2021. ] | |
[14] | 刘金苗, 李菊艳, 尹忠东, 等. 干枯骆驼刺对风沙流场影响的数值模拟研究[J]. 干旱区研究, 2022, 39(5): 1514-1525. |
[Liu Jinmiao, Li Juyan, Yin Zhongdong, et al. Numerical simulation study on the influence of dry Alhagi camelorum on the wind-sand flow field[J]. Arid Zone Research, 2022, 39(5): 1514-1525. ] | |
[15] | 王翔宇, 赵名彦, 丁国栋, 等. 天然灌草植被防治土壤风蚀机理[J]. 水土保持通报, 2008, 28(5): 55-59. |
[Wang Xiangyu, Zhao Mingyan, Ding Guodong, et al. Mechanism of natural shrub-grass in controlling soil erosion by wind[J]. Bulletin of Soil and Water Conservation, 2008, 28(5): 55-59. ] | |
[16] | 俞明聪. 风沙流对准朔铁路路堑响应规律及防风沙措施效果数值研究[D]. 北京: 北京交通大学, 2017. |
[Yu Mingcong. Numerical Simulation Research on Response Rule of Wind-Blown Sand Flow to Zhungger-Shuozhou Railway Cutting and Effect of Windbreak and Sand Fixation Measures[D]. Beijing: Beijing Jiaotong University, 2017. ] | |
[17] | 王大帅, 耿文燕, 石龙. 兰新高铁沿线插板式挡沙墙防沙性能研究[J]. 铁道标准设计, 2022, 66(4): 74-79. |
[Wang Dashuai, Geng Wenyan, Shi Long. Study on sand-control performance of plug-plate sand-retaining wall along Lanzhou-Urumqi High-speed Railway[J]. Railway Standard Design, 2022, 66(4): 74-79. ] | |
[18] | 岳贤宇. 防风挡沙墙背风侧的流场及沙粒相运动特征[D]. 兰州: 兰州大学, 2022. |
[Yue Xianyu. The Flow Field and Sand Movement Characteristics on the Leeward Side of the Windbreak and Sand Retaining Wall[D]. Lanzhou: Lanzhou University, 2022. ] | |
[19] | 何明珠, 张景光, 王辉. 荒漠植物枝系构型影响因素分析[J]. 中国沙漠, 2006, 26(4): 625-630. |
[He Mingzhu, Zhang Jingguang, Wang Hui. Analysis of branching architecture factors of desert plants[J]. Journal of Desert Research, 2006, 26(4): 625-630. ] | |
[20] | 孙栋元, 赵成义, 王丽娟, 等. 荒漠植物构型研究进展[J]. 水土保持研究, 2011, 18(5): 281-287. |
[Sun Dongyuan, Zhao Chengyi, Wang Lijuan, et al. Progress in the study on architecture of desert plants[J]. Research of Soil and Water Conservation, 2011, 18(5): 281-287. ] | |
[21] | 徐秀芸, 张进虎, 朱国庆, 等. 沙冬青与几种常见物种的防风阻沙效能定量研究[J]. 中国农学通报, 2011, 27(4): 21-25. |
[Xu Xiuyun, Zhang Jinhu, Zhu Guoqing, et al. Quantitative research on wind and set sand performance of Ammopiptanthus and several common shrubs[J]. Chinese Agricultural Science Bulletin, 2011, 27(4): 21-25. ] | |
[22] | 杨光, 马文喜, 包斯琴, 等. 亚玛雷克沙漠猫头刺和小叶锦鸡儿灌丛结构与风影沙丘间的关系[J]. 干旱区研究, 2016, 33(3): 540-547. |
[Yang Guang, Ma Wenxi, Bao Siqin, et al. Relationship between the structure of Oxytropis aciphylla and Caragana microphylia shrubberies and their wind-shadow dunes[J]. Arid Zone Research, 2016, 33(3): 540-547. ] | |
[23] | 王蕾, 王志, 刘连友, 等. 沙柳灌丛植株形态与气流结构野外观测研究[J]. 应用生态学报, 2005, 16(11): 3-7. |
[Wang Lei, Wang Zhi, Liu Lianyou, et al. Field investigation on Salix psammophila plant morphology and airflow structure[J]. Chinese Journal of Applied Ecology, 2005, 16(11): 3-7. ] | |
[24] | 董治宝, 苏志珠, 钱广强, 等. 库姆塔格沙漠风沙地貌[M]. 北京: 科学出版社, 2011: 272-287. |
[Dong Zhibao, Su Zhizhu, Qian Guangqiang, et al. Aeolian Geomorphology of the Kumtagh Desert[M]. Beijing: Science Press, 2011: 272-287. ] | |
[25] | 郭春秀, 袁宏波, 徐先英, 等. 石羊河下游7种沙生灌木的构型比较[J]. 西北植物学报, 2015, 35(5): 1031-1036. |
[Guo Chunxiu, Yuan Hongbo, Xu Xianying, et al. A comparison on architecture of 7 psammophyte shrubs at lower reaches of Shiyang River Basin[J]. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(5): 1031-1036. ] | |
[26] | 张奕, 肖辉杰, 辛智鸣, 等. 乌兰布和沙区典型灌木防风阻沙效益[J]. 中国水土保持科学, 2021, 19(1): 87-96. |
[Zhang Yi, Xiao Huijie, Xin Zhiming, et al. Wind prevention and sand resistance of typical shrubs in Ulan Buh Desert[J]. Science of Soil and Water Conservation, 2021, 19(1): 87-96. ] | |
[27] | 董治宝, 郑晓静. 中国风沙物理研究50 a(Ⅱ)[J]. 中国沙漠, 2005, 25(6): 3-23. |
[Dong Zhibao, Zheng Xiaojing. Research achievements in aeolian physics in China for last five decades(Ⅱ)[J]. Journal of Desert Research, 2005, 25(6): 3-23. ] | |
[28] | 唐艳, 刘连友, 屈志强, 等. 植物阻沙能力研究进展[J]. 中国沙漠, 2011, 31(1): 43-48. |
[Tang Yan, Liu Lianyou, Qu Zhiqiang, et al. Research review of capacity of plant for trapping blown sand[J]. Journal of Desert Research, 2011, 31(1): 43-48. ] | |
[29] | 屈志强, 张莉, 丁国栋, 等. 毛乌素沙地常见灌木单株对土壤风蚀的影响[J]. 中国水土保持科学, 2008, 6(4): 66-70. |
[Qu Zhiqiang, Zhang Li, Ding Guodong, et al. Effect of single shrub on wind erosion in Mu Us Sandland[J]. Science of Soil and Water Conservation, 2008, 6(4): 66-70. ] | |
[30] | Guo Z Y, Yang X F, Wu X X, et al. Optimal design for vegetative windbreaks using 3D numerical simulations[J]. Agricultural and Forest Meteorology, 2021, 6(18): 298-299. |
|