青藏高原东北侧暴雨数值模式预报空间误差特征
收稿日期: 2021-04-24
修回日期: 2021-06-02
网络出版日期: 2022-01-24
基金资助
甘肃省气象局气象科研项目(Zd2021-01);甘肃省科技计划项目(20YF3FA012);甘肃省气象局创新团队(GSQXCXTD-2020-01);兰州中心气象台创新基金(LCMO-202114)
Spatial error characteristics of rainstorm forecasts of large-scale numerical model over the northeastern side of Tibetan Plateau
Received date: 2021-04-24
Revised date: 2021-06-02
Online published: 2022-01-24
利用2019—2020年5—9月ECMWF(European Center for Medium-Range Weather Forecast)、GRAPES-GFS(中国气象局GRAPES全球数值预报业务系统,Global/Regional Assimilation and Prediction System-Global Forecast System)大尺度数值模式36 h预报时效的24 h降水量预报和加密降水观测资料,基于CRA空间检验技术识别、分离青藏高原东北侧暴雨目标(ECMWF模式18个,GRAPES-GFS模式11个),定量分析了两种模式对暴雨预报的空间误差(落区、强度和形态误差)特征,总结大尺度数值模式在青藏高原东北侧暴雨预报中的适用性。结果表明:(1) 两种模式的降水预报形态误差占比均最大。ECMWF预报的强度误差占比最小,落区误差次之,而GRAPES-GFS的落区误差占比最小,强度误差次之。(2) 两种模式预报的暴雨落区位置均较实况偏西偏北。暴雨大值中心ECMWF偏西偏南,而GRAPES-GFS仅偏西。(3) 对暴雨雨区面积的预报两种模式均明显偏小,容易造成暴雨漏报,对最大降水量和平均雨强的预报GRAPES-GFS模式均偏弱超过40%,ECMWF预报的平均雨强偏弱11.49%,最大降水量偏强1.47%。(4) 两种模式对甘肃陇东南地区和陕西西南部的暴雨预报效果较好,而对陕北及宁夏等偏北地区的预报效果较差。
张君霞,孔祥伟,刘新伟,王勇 . 青藏高原东北侧暴雨数值模式预报空间误差特征[J]. 干旱区研究, 2022 , 39(1) : 64 -74 . DOI: 10.13866/j.azr.2022.01.07
Rainstorm targets were identified from May to September in 2019-2020 over the northeastern side of Tibetan Plateau by using the Contiguous Rain Area technique. There were 18 rainstorm targets in European Center for Medium-Range Weather Forecast (ECMWF) and 11 in Global/Regional Assimilation and Prediction System-Global Forecast System (GRAPES-GFS) mode. The spatial error characteristics—including displacement, intensity, and pattern error—of the two models for rainstorm forecasts were analyzed quantitatively, and the applicability of the two models in rainstorm forecasts over the northeastern side of Tibetan Plateau is here summarized. The results of the study showed that: (1) The pattern errors of rainstorm forecasts in ECMWF and GRAPES-GFS accounted for the largest proportion of the total errors. ECMWF had the smallest intensity error ratio for rainstorm forecast, followed by displacement errors, while the GRAPES-GFS model had the smallest displacement errors, followed by intensity errors. (2) The rainstorm areas in the two models shifted more northwestward compared with observations. The forecast of ECMWF for the rainstorm center was southwestward, while that of GRAPES-GFS was only westward. (3) The forecast of rainstorm area produced by the two models was obviously too limited, meaning that it could easily fail to predict rainstorm events. The GRAPE-GFS model underestimated both maximum precipitation and rainfall intensity by more than 40%, while ECMWF under-forecasted about 11.49% for the average rainfall intensity and overestimated about 1.47% for maximum precipitation. (4) The two models showed a better forecasting ability for rainstorm in the southeastern Gansu and southwestern Shaanxi areas, and a poorer one in the northern Shaanxi, Ningxia, and other northern areas.
[1] | 王万筠, 殷海涛, 赵敬红, 等. 2014—2016年数值降水预报在天津的检验评估[J]. 气象科技, 2018, 46(4): 718-723. |
[1] | [Wang Wanjun, Yin Haitao, Zhao Jinghong, et al. Verification of numerical forecast products for TainJin precipitation forecast in recent three years[J]. Meteorological Science and Technology, 2018, 46(4): 718-723. ] |
[2] | Ebert E E, Mcbride J L. Verification of precipitation in weather systems: Determination of systematic errors[J]. Journal of Hydrology, 2000, 239(1): 179-202. |
[3] | 崔粉娥, 王勇, 李慧君. 多家数值产品沿海大暴雨预报性能检验[J]. 气象科技, 2013, 41(4): 696-702. |
[3] | [Cui Fen’e, Wang Yong, Li Huijun. Performance verification of coastal torrential rainfall forecast with several numerical products[J]. Meteorological Science and Technology, 2013, 41(4): 696-702. ] |
[4] | Davis C A, Brown B G, Bullock R, et al. The method for object-based diagnostic evaluation (MODE) applied to numerical forecasts from the 2005 NSSL/SPC Spring Program[J]. Weather & Forecasting, 2009, 24(5): 1252-1267. |
[5] | 戴建华, 茅懋, 邵玲玲, 等. 强对流天气预报检验新方法在上海的应用尝试[J]. 气象科技进展, 2013, 3(3): 42-47. |
[5] | [Dai Jianhua, Mao Mao, Shao Lingling, et al. Applications of a new verification method for severe convection forecasting and nowcasting in Shanghai[J]. Advances in Meteorological Science and Technology, 2013, 3(3): 42-47. ] |
[6] | 刘凑华, 牛若芸. 基于目标的降水检验方法及应用[J]. 气象, 2013, 39(6): 681-690. |
[6] | [Liu Couhua, Niu Ruoyun. Object-based precipitation verification method and its application[J]. Meteorological Applications, 2013, 39(6): 681-690. ] |
[7] | Davis C, Brown B, Bullock R. Object-based verification of precipitation forecasts. Part I: Methodology and application to mesoscale rain areas[J]. Monthly Weather Review, 2006, 134(7): 1772-1784. |
[8] | Davis C, Brown B, Bullock R. Object-based verification of precipitation forecasts. Part II: Application to convective rain systems[J]. Monthly Weather Review, 2006, 134(7): 1785-1795. |
[9] | Marzban C, Sandgathe S. Cluster analysis for verification of precipitation fields[J]. Weather & Forecasting, 2006, 21(5): 824-838. |
[10] | Gilleland E, Lee T C, Halley G J, et al. Computationally efficient spatial forecast verification using Baddeley’s delta image metric[J]. Monthly Weather Review, 2008, 136(5): 1747-1757. |
[11] | Wernli H, Paulat M, Hagen M, et al. SAL: A novel quality measure for the verification of quantitative precipitation forecasts[J]. Monthly Weather Review, 2008, 136(11): 4470-4487. |
[12] | Wernli H, Hofmann C, Zimmer M. Spatial forecast verification methods intercomparison project: Application of the SAL technique[J]. Weather & Forecasting, 2009, 24(6): 1472-1484. |
[13] | 赵滨, 张博. 邻域空间检验方法在降水评估中的应用[J]. 暴雨灾害, 2017, 36(6): 497-504. |
[13] | [Zhao Bin, Zhang Bo. Application of neighborhood spatial verification method on precipitation evaluation[J]. Torrential Rain and Disasters, 2017, 36(6): 497-504. ] |
[14] | Ebert E E, Damrath U, Wergen W, et al. The WGNE assessment of short-term quantitative precipitation forecasts (QPFs) from operational numerical weather prediction models[J]. Bulletin of the American Meteorological Society, 2003, 84(4): 481-492. |
[15] | Sharma K, Ashrit R, Ebert E, et al. Assessment of Met Office Unified Model (UM) quantitative precipitation forecasts during the Indian summer monsoon: Contiguous Rain Area (CRA) approach[J]. Journal of Earth System Science, 2019, 128(1): 1-17. |
[16] | Das A K, Kundu P K, Roy B, et al. Performance evaluation of WRF model with different cumulus parameterizations in forecasting monsoon depressions[J]. Mausam, 2019, 70(3): 501-522. |
[17] | 符娇兰, 代刊. 基于CRA空间检验技术的西南地区东部强降水EC模式预报误差分析[J]. 气象, 2016, 42(12): 1456-1464. |
[17] | [Fu Jiaolan, Dai Kan. The ECMWF model precipitation systematic error in the east of Southwest China based on the contiguous rain area method for spatial forecast verification[J]. Meteorological Applications, 2016, 42(12): 1456-1464. ] |
[18] | 王新敏, 栗晗. 多数值模式对台风暴雨过程预报的空间检验评估[J]. 气象, 2020, 46(6): 753-764. |
[18] | [Wang Xinmin, Li Han. Spatial verification evaluation of Typhoon rainstorm by multiple numerical models[J]. Meteorological Applications, 2020, 46(6): 753-764. ] |
[19] | Yu Z, Chen Y J, Ebert B, et al. Benchmark rainfall verification of landfall tropical cyclone forecasts by operational ACCESS-TC over China[J]. Meteorological Applications, 2020, 27: e1842. |
[20] | Zhuang Y, Tang X, Wang Y. Impact of track forecast error on tropical cyclone quantitative precipitation forecasts over the coastal region of China[J]. Journal of Hydrology, 2020, 589: 125347. |
[21] | 李栋梁, 邵鹏程, 王慧, 等. 中国东亚副热带夏季风北边缘带研究进展[J]. 高原气象, 2013, 32(1): 305-314. |
[21] | [Li Dongliang, Shao Pengcheng, Wang Hui, et al. Advances in research of the north boundary belt of East Asia Subtropical Summer Monsoon in China[J]. Plateau Meteorology, 2013, 32(1): 305-314. ] |
[22] | 陈婕, 黄伟, 靳立亚, 等. 东亚夏季风的气候北界指标及其年际变化研究[J]. 中国科学: 地球科学, 2018, 48(1): 93-101. |
[22] | [Chen Jie, Huang Wei, Jin liya, et al. A climatological northern boundary index for East Asian Summer Monsoon and its interannual variability[J]. Scientia Sinica (Terrae), 2018, 48(1): 93-101. ] |
[23] | 刘玉芝, 吴楚樵, 贾瑞, 等. 大气环流对中东亚干旱半干旱区气候影响研究进展[J]. 中国科学: 地球科学, 2018, 48(9): 1141-1152. |
[23] | [Liu Yuzhi, Wu Chuqiao, Jia Rui, et al. An overview of the influence of atmospheric circulation on the climate in arid and semi-arid region of Central and East Asia[J]. Scientia Sinica(Terrae), 2018, 48(9): 1141-1152. ] |
[24] | 殷田园, 殷淑燕, 李富民. 秦岭南北区域夏季极端降水与西太平洋副热带高压的关系[J]. 干旱区研究, 2019, 36(6): 1379-1390. |
[24] | [Yin Tianyuan, Yin Shuyan, Li Fumin. Relationship between the summer extreme precipitation in the south and north of the Qinling Mountains and Western Pacific Subtropical High[J]. Arid Zone Research, 2019, 36(6): 1379-1390. ] |
[25] | 姬凯, 王士新, 左洪超, 等. 东亚副热带急流经向位置对中国西北东部盛夏降水的影响[J]. 干旱区研究, 2020, 37(1): 10-17. |
[25] | [Ji Kai, Wang Shixin, Zuo Hongchao, et al. Effect of meridional position of East Asian Subtropical Jet on midsummer precipitation in eastern part of Northwest China[J]. Arid Zone Research, 2020, 37(1): 10-17. ] |
[26] | 李栋梁, 谢金南, 王文. 中国西北夏季降水特征及其异常研究[J]. 大气科学, 1997, 21(3): 331-340. |
[26] | [Li Dongliang, Xie Jinnan, Wang Wen. A study of summer precipitation features and anomaly in Northwest China[J]. Chinese Journal of Atmospheric Sciences, 1997, 21(3): 331-340. ] |
[27] | 杨昭明, 张调风. 1961—2017年青藏高原东北部雨季降水量变化及其贡献度分析[J] 干旱区研究, 2021, 38(1): 22-28. |
[27] | [Yang Zhaoming, Zhang Tiaofeng. Analysis of precipitation change and its contribution in the rainy season in the northeast Qinghai-Tibet Plateau from 1961-2017[J]. Arid Zone Research 2020, 38(1): 22-28. ] |
[28] | 赵庆云, 宋松涛, 杨贵名, 等. 西北地区暴雨时空变化及异常年夏季环流特征[J]. 兰州大学学报(自然科学版), 2014, 50(4): 517-522. |
[28] | [Zhao Qingyun, Song Songtao, Yang Guiming, et al. Spatial and temporal variations of torrential rain over Northwest China and general circulation anomalies in summer[J]. Journal of Lanzhou University (Natural Sciences), 2014, 50(4): 517-522. ] |
[29] | 黄玉霞, 王宝鉴, 黄武斌, 等. 我国西北暴雨的研究进展[J]. 暴雨灾害, 2019, 38(5): 515-525. |
[29] | [Huang Yuxia, Wang Baojian, Huang Wubin, et al. A review on rainstorm research in Northwest China[J]. Torrential Rain and Disasters, 2019, 38(5): 515-525. ] |
[30] | 陈豫英, 陈楠, 任小芳, 等. 贺兰山东麓罕见特大暴雨的预报偏差和可预报性分析[J]. 气象, 2018, 44(1): 159-169. |
[30] | [Chen Yuying, Chen Nan, Ren Xiaofang, et al. Analysis on forecast deviation and predictability of a rare severe rainstorm along the eastern Helan Mountain[J]. Meteorological Monthly, 2018, 44(1): 159-169. ] |
[31] | 杨侃, 纪晓玲, 毛璐, 等. 贺兰山两次特大致洪暴雨的数值模拟与地形影响对比[J]. 干旱气象, 2020, 38(4): 581-590. |
[31] | [Yang Kan, Ji Xiaoling, Mao Lu, et al. Numerical simulation and comparative analysis of topographic effects on two extraordinary severe flood rainstorms in Helan Mountain[J]. Journal of Arid Meteorology, 2020, 38(4): 581-590. ] |
[32] | 刘凑华, 曹勇, 符娇兰. 基于变分法的客观分析算法及应用[J]. 气象学报, 2013, 71(6): 1172-1182. |
[32] | [Liu Couhua, Cao Yong, Fu Jiaolan. An objective analysis algorithm based on the variation method[J]. Acta Meteorologica Sinica, 2013, 71(6): 1172-1182. ] |
[33] | 赵海英, 薄燕青, 邱贵强, 等. 地形对山西暴雨影响的数值模拟研究[J]. 气象与环境科学, 2017, 40(2): 84-91. |
[33] | [Zhao Haiying, Bo Yanqing, Qiu Guiqiang, et al. Numerical simulation study of topography effects on a severe rainstorm in Shanxi Province[J]. Meteorological and Environmental Sciences, 2017, 40(2): 84-91. ] |
/
〈 | 〉 |