关中平原极端降水时空变化及其与大气环流的关系
收稿日期: 2021-09-09
修回日期: 2021-10-25
网络出版日期: 2022-01-24
基金资助
国家重点研发计划项目(2016YFC00707)
Spatial-temporal variations in extreme precipitation and their relationship with atmospheric circulation in the Guanzhong Plain
Received date: 2021-09-09
Revised date: 2021-10-25
Online published: 2022-01-24
基于关中平原13个气象站1957—2019年逐日降水资料,运用一元线性回归、Pearson相关分析和小波相干分析等方法,计算各极端降水指数,分析其时空变化特征,探讨极端降水与大气环流的关系。结果表明:(1) 在时间上,除极端降水强度以0.007 mm·d-1·(10a)-1速率的上升外,其他极端降水指数均呈下降趋势,其中年均极端降水总量(PRCPTOT)下降最快,下降速率为-5.528 mm·(10a)-1,并且各极端降水指数均无显著突变点。(2) 在空间上,极端降水指数南高北低,空间差异显著。(3) 反映大气环流的南方涛动指数(SOI)对极端降水影响最为显著。SOI越大,关中平原越易出现少雨现象。本研究可为关中平原洪水灾害防治提供科学理论依据。
丁莹莹 , 邱德勋 , 吴常雪 , 穆兴民 , 高鹏 . 关中平原极端降水时空变化及其与大气环流的关系[J]. 干旱区研究, 2022 , 39(1) : 104 -112 . DOI: 10.13866/j.azr.2022.01.11
Based on daily precipitation data collected from 13 meteorological stations in the Guanzhong Plain in 1957-2019, the extreme precipitation indices were calculated and their spatial-temporal variation characteristics were analyzed. Specifically, the correlation between extreme precipitation and atmospheric general circulation was explored using a unitary linear regression method, Pearson correlation analysis, and wavelet coherence analysis. The results showed the following. (1) Extreme precipitation intensity showed an increasing trend at a rate of 0.007 mm·d-1·(10a)-1, whereas other extreme precipitation indices showed a decreasing trend in which the annual total extreme precipitation showed the most pronounced decreased with a rate of -5.528 mm·(10a)-1. Additionally, none of the extreme precipitation indices had a significant mutation point. (2) The extreme precipitation indices were higher in the south and lower in the north, with a significant spatial difference detected. (3) Only the southern oscillation index (SOI) had a significant effect on extreme precipitation. The larger the SOI value, the more likely it was to rain less on the Guanzhong Plain. These results provide a theoretical basis for flood disaster prevention and control on the Guanzhong Plain.
[1] | 赵一飞, 邹欣庆, 许鑫王豪. 珠江流域极端降水事件及其与大气环流之间的关系[J]. 生态学杂志, 2014, 33(9): 2528-2537. |
[1] | [Zhao Yifei, Zou Xinqing, Xu Xinwanghao. Extreme precipitation events in the Pearl River Basin and its relationship with atmospheric circulation[J]. Chinese Journal of Ecology, 2014, 33(9): 2528-2537. ] |
[2] | 陈星任, 杨岳, 何佳男, 等. 近60年中国持续极端降水时空变化特征及其环流因素分析[J]. 长江流域资源与环境, 2020, 29(9): 2068-2081. |
[2] | [Chen Xingren, Yang Yue, He Jianan, et al. Analysis on the characteristics of temporal and spatial changes of continuous extreme precipitation in China and its circulation factors in the past 60 years[J]. Resources and Environment in the Yangtze Basin, 2020, 29(9): 2068-2081. ] |
[3] | 刘昌新, 张海玲, 吴静. 基于SSPs情景的中国极端降水影响评估[J]. 环境保护, 2021, 49(8): 29-34. |
[3] | [Liu Changxin, Zhang Hailing, Wu Jing. Assessment of the impact of extreme precipitation in China based on SSPs scenarios[J]. Environmental Protection, 2021, 49(8): 29-34. ] |
[4] | 马梦阳, 韩宇平, 王庆明, 等. 海河流域极端降水时空变化规律及其与大气环流的关系[J]. 水电能源科学, 2019, 37(6): 1-4. |
[4] | [Ma Mengyang, Han Yuping, Wang Qingming, et al. The temporal and spatial variation of extreme precipitation in the Haihe River Basin and its relationship with atmospheric circulation[J]. Hydropower Energy Science, 2019, 37(6): 1-4. ] |
[5] | 周旗, 张海宁, 任源鑫. 1961—2016年渭河流域极端降水事件研究[J]. 地理科学, 2020, 40(5): 833-841. |
[5] | [Zhou Qi, Zhang Haining, Ren Yuanxin. A study on extreme precipitation events in the Weihe River Basin from 1961 to 2016[J]. Chinese Journal of Geography, 2020, 40(5): 833-841. ] |
[6] | 邹磊, 余江游, 王飞宇, 等. 渭河流域极端降水时空演变规律及其对大气环流因子的响应[J]. 干旱区研究, 2021, 38(3): 764-774. |
[6] | [Zou Lei, Yu Jiangyou, Wang Feiyu, et al. The temporal and spatial evolution of extreme precipitation in the Weihe River Basin and its response to atmospheric circulation factors[J]. Arid Zone Research, 2021, 38(3): 764-774. ] |
[7] | 戴声佩, 罗红霞, 李茂芬, 等. 1959—2016年华南地区极端降水事件变化特征[J/OL]. 中国农业资源与区划: 1-17[2021-11-30].http://kns.cnki.net/kcms/detail/11.3513.S.20210607.1505.040.html. |
[7] | [Dai Shengpei, Luo Hongxia, Li Maofen, et al. Variation characteristics of extreme precipitation events in South China from 1959 to 2016[J/OL]. China Agricultural Resources and Regional Planning: 1-17[2021-11-30].http://kns.cnki.net/kcms/detail/11.3513.S.20210607.1505.040.html. ] |
[8] | 杜懿, 龙铠豪, 王大洋, 等. 基于机器学习方法的安徽省年降水量预测[J]. 水电能源科学, 2020, 38(7): 5-7, 41. |
[8] | [ Du Yi, Long Kaihao, Wang Dayang, et al. Prediction of annual precipitation in anhui province based on machine learning method[J]. Hydropower Energy Science, 2020, 38(7): 5-7, 41. ] |
[9] | 罗志文, 王小军, 刘梦洋, 等. 基于地区线性矩法的陕西省极端降水时空特征[J]. 干旱区研究, 2021, 38(5): 1295-1305. |
[9] | [Luo Zhiwen, Wang Xiaojun, Liu Mengyang, et al. Temporal and spatial characteristics of extreme precipitation in Shaanxi Province based on regional linear moment method[J]. Arid Zone Research, 2021, 38(5): 1295-1305. ] |
[10] | 刘燕飞, 隆霄, 王晖. 陕西中西部地区一次暴雨过程的数值模拟研究[J]. 高原气象, 2015, 34(2): 378-388. |
[10] | [Liu Yanfei, Long Xiao, Wang Hui. Numerical simulation studies on a rainstorm in central Western Shaanxi Province[J]. Plateau Meteorology, 2015, 34(2): 378-388. ] |
[11] | 白爱娟, 施能. 东亚冬、夏季风强度指数及其与陕西降水变化的关系[J]. 南京气象学院学报, 2004, 37(4): 519-526. |
[11] | [Bai Aijuan, Shi Neng. East Asian winter/summer monsoon intensity index and its relationship with precipitation change in Shaanxi Province[J]. Journal of Nanjing Institute of Meteorology, 2004, 37(4): 519-526. ] |
[12] | 周雅蔓, 刘晶, 赵勇, 等. 春季热带海温与北疆夏季极端降水的关系研究[J]. 冰川冻土, 2021, 43(4): 1166-1178. |
[12] | [Zhou Yaman, Liu Jing, Zhao Yong, et al. Study on the relationship between spring tropical sea temperature and extreme summer precipitation in northern Xinjiang[J]. Journal of Glaciology and Geocryology, 2021, 43(4): 1166-1178. ] |
[13] | 张冲, 赵景波. 厄尔尼诺/拉尼娜事件对陕西气候的影响[J]. 陕西师范大学学报(自然科学版), 2010, 38(5): 98-104. |
[13] | [Zhang Chong, Zhao Jingbo. The impact of El Nino/La Nina event on the climate of Shaanxi[J]. Journal of Shaanxi Normal University(Natural Science Edition), 2010, 38(5): 98-104. ] |
[14] | 窦睿音, 延军平. 1960—2010年关中地区旱涝灾害对气候变化的响应[J]. 湖南农业大学学报(自然科学版), 2012, 38(5): 542-547. |
[14] | [Dou Ruiyin, Yan Junping. Responses of drought and flood disasters in Guanzhong area from 1960 to 2010 to climate change[J]. Journal of Hunan Agricultural University (Natural Science Edition), 2012, 38(5): 542-547. ] |
[15] | 刘岩, 李晶, 秦克玉, 等. 基于情景的关中平原土地利用和生态系统服务预测及变化分析[J]. 陕西师范大学学报(自然科学版), 2018, 46(2): 95-103. |
[15] | [Liu Yan, Li Jing, Qin Keyu, et al. Scenario-based prediction and change analysis of land use and ecosystem services in the Guanzhong Plain[J]. Journal of Shaanxi Normal University(Natural Science Edition), 2018, 46(2): 95-103. ] |
[16] | Zhou B, Xu Y, Wu J, et al. Changes in temperature and precipitation extreme indices over China: Analysis of a high-resolution grid dataset[J]. International Journal of Climatology, 2016, 36(3): 1051-1066. |
[17] | 王刚, 严登华, 张冬冬, 等. 海河流域1961—2010年极端气温与降水变化趋势分析[J]. 南水北调与水利科技, 2014, 12(1): 1-6. |
[17] | [Wang Gang, Yan Denghua, Zhang Dongdong, et al. Analysis on the trend of extreme temperature and precipitation in the Haihe River Basin from 1961 to 2010[J]. South-to-North Water Diversion and Water Conservancy Science and Technology, 2014, 12(1): 1-6. ] |
[18] | Khaled H Hamed. Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypojournal[J]. Journal of Hydrology, 2008, 349(3-4): 350-363. doi: 10.1016/j.jhydrol.2007.11.009. |
[19] | Grinsted A, Moore J C, Jevrejeva S. Application of the cross wavelet transform and wavelet coherence to geophysical time series[J]. Nonlinear Processes in Geophysics, 2004, 11(5/6): 561-566. doi: 10.5194/npg-11-561-2004. |
[20] | 邵骏. 基于交叉小波变换的水文多尺度相关分析[J]. 水力发电学报, 2013, 32(2): 22-26. |
[20] | [Shao Jun. Hydrological multi-scale correlation analysis based on cross wavelet transform[J]. Journal of Hydroelectric Engineering, 2013, 32(2): 22-26. ] |
[21] | 张菁, 张珂, 王晟, 等. 陕甘宁三河源区1971—2017年极端降水时空变化分析[J]. 河海大学学报(自然科学版), 2021, 49(3): 288-294. |
[21] | [Zhang Jing, Zhang Ke, Wang Sheng, et al. Analysis of the temporal and spatial changes of extreme precipitation in the source area of the Three Rivers in Shaanxi, Gansu and Ningxia from 1971 to 2017[J]. Journal of Hohai University (Natural Science Edition), 2021, 49(3): 288-294. ] |
[22] | Lachaux J P, Lutz A, Rudrauf D, et al. Estimating the time-course of coherence between single-trial brain signals: An introduction to wavelet coherence[J]. Neurophysiologie Clinique/Clinical Neurophysiology, 2002, 32(3): 157-174. |
/
〈 | 〉 |