生态与环境

基于土地利用覆被变化(LUCC)的人类活动与流域生物多样性灰色关联分析

展开
  • 西安科技大学测绘科学与技术学院,陕西 西安 710054
孙彦旭(1996-),男,硕士研究生,主要从事生态系统服务研究. E-mail: 1377052897@qq.com

收稿日期: 2021-03-31

  修回日期: 2021-06-30

  网络出版日期: 2021-11-29

基金资助

国家自然科学基金资助项目(41771576);陕西省自然科学基础研究计划资助项目(2018JM4010);西安科技大学博士启动金项目(2017QDJ040)

Grey correlation analysis of human activities and watershed biodiversity based on land use and cover change

Expand
  • College of Geomatics, Xi’an University of Science and Technology, Xi’an 710054, Shaanxi, China

Received date: 2021-03-31

  Revised date: 2021-06-30

  Online published: 2021-11-29

摘要

以黄土高原中部的泾河流域为研究区,通过采用结合InVEST(Integrated Valuation of Ecosystem Services and Tradeoffs)模型生境质量与植被覆盖度的综合方法,分析植物多样性在栅格尺度上的时空变化,并结合灰色关联分析方法,分析植物多样性与土地利用强度、人口密度等因子的关联关系。结果表明:(1) 泾河流域植物多样性处于中等水平(BS>0.53),空间格局变化明显。2000—2015年,流域内植物多样性平均值从0.5382增加到0.5951,其中,植物多样性高值区域占总面积的22.1%,主要分布在山地、国家自然保护区和林业地区,植物多样性低值区占总面积的5.99%,主要分布在城区及北部植被覆盖低区域。(2) 土地利用强度是流域植物多样性的主要影响因素,其次太阳辐射和人口密度也会造成较大影响,此外还受其他因素的共同作用。

本文引用格式

孙彦旭,周自翔,米朝娟 . 基于土地利用覆被变化(LUCC)的人类活动与流域生物多样性灰色关联分析[J]. 干旱区研究, 2021 , 38(6) : 1782 -1792 . DOI: 10.13866/j.azr.2021.06.30

Abstract

Studies on the relationship between human activities and biodiversity in the Loess Plateau can provide a scientific basis for ecological restoration and biodiversity conservation. For example, in the Jinghe River Basin in the middle part of the Loess Plateau, biodiversity is rich, but problems such as a fragile ecological environment exist. Although studies have been addressing such issues, effective methods for assessing medium-or large-scale biodiversity changes are lacking because of insufficient basic data and coexistence of multiple habitat types. In this study, a comprehensive method combining a model of Integrated Valuation of Ecosystem Services and Tradeoffs on habitat quality and vegetation coverage was used to analyze the spatiotemporal changes in plant diversity on a grid scale. Gray correlation analysis was also performed to analyze the relationship of plant diversity, land use intensity, population density, and other factors. Results show that (1) the level of plant diversity in the Jinghe River Basin was moderate (BS>0.53), and the spatial pattern changed significantly. The average plant diversity in the basin increased from 0.5382 in 2000 to 0.5951 in 2015. Areas with a high plant diversity accounted for 22.1% of the total area, and they were mainly distributed in mountainous areas, national nature reserves, and forestry areas. By comparison, areas with a low plant diversity accounted for 5.99% of the total area, and they were mostly distributed in urban areas and areas with low vegetation coverage in the north of the basin. (2) Plant diversity is influenced by many factors, but it is mainly affected by land use intensity, followed by solar radiation and population density. This study can provide additional information about the basin and a basis for developing biodiversity conservation policies and managing human activities.

参考文献

[1] Gong J, Xie Y, Cao E, et al. Integration of InVEST-habitat quality model with landscape pattern indexes to assess mountain plant biodiversity change: A case study of Bailongjiang watershed in Gansu Province[J]. Journal of Geographical Sciences, 2019, 29(7):1193-1210.
[2] Chaplin-Kramer R, Sharp R P, Mandle L, et al. Spatial patterns of agricultural expansion determine impacts on biodiversity and carbon storage[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(24):7402.
[3] Fu B, Yu L, Lue Y, et al. Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China[J]. Ecological Complexity, 2011, 8(4):284-293.
[4] 张琨, 吕一河, 傅伯杰, 等. 黄土高原植被覆盖变化对生态系统服务影响及其阈值[J]. 地理学报, 2020, 75(5):949-960.
[4] [ Zhang Kun, Lyu Yihe, Fu Bojie, et al. The effects of vegetation coverage changes on ecosystem service and their threshold in the Loess Plateau[J]. Acta Geographica Sinica, 2020, 75(5):949-960. ]
[5] Vihervaara P, Auvinen A P, Mononen L, et al. How essential biodiversity variables and remote sensing can help national biodiversity monitoring[J]. Global Ecology and Conservation, 2017, 10:43-59.
[6] 王昱熙, 谢彦波, Nyambayar Batbayar, 等. 基于卫星追踪探讨黄河流域自然保护区对3种水鸟栖息地的保护现状[J]. 生物多样性, 2020, 28(12):1483-1495.
[6] [ Wang Yuxi, Xie Yanbo, Nyambayar Batbayar, et al. Discussion of existing protection for three waterbirds’ habitats in the Yellow River basin nature reserves, based on satellite tracking[J]. Biodiversity Science, 2020, 28(12):1483-1495. ]
[7] 李咏红, 香宝, 袁兴中, 等. 成渝经济区生物多样性空间分异特征[J]. 环境科学研究, 2012, 25(10):1148-1154.
[7] [ Li Yonghong, Xiang Bao, Yuan Xingzhong, et al. Characteristics of biodiversity spatial differentiation in the Chendu-Chongqing economic zone[J]. Research of Environmental Sciences, 2012, 25(10):1148-1154. ]
[8] 谢怡凡, 姚顺波, 邓元杰, 等. 延安市退耕还林(草)工程对生境质量时空格局的影响[J]. 中国生态农业学报, 2020, 28(4):575-586.
[8] [ Xie Yifan, Yao Shunbo, Deng Yuanjie, et al. Impact of the ‘Grain for Green’ project on the spatial and temporal pattern of habitat quality in Yan’an City, China[J]. Chinese Journal of Eco-Agriculture, 2020, 28(4):575-586. ]
[9] 朱杰, 龚健, 李靖业. 青藏高原东部生态敏感区生境质量时空演变特征——以青海省河湟谷地为例[J]. 资源科学, 2020, 42(5):193-205.
[9] [ Zhu jie, Gong Jian, Li Jingye. Spatiotemporal change of habitat quality in ecologically sensitive areas of eastern Qinghai-Tibet Plateau: A case study of the Hehuang Valley, Qinghai Province[J]. Resources Science, 2020, 42(5):193-205. ]
[10] Lausch A, Bannehr L, Beckmann M, et al. Linking earth observation and taxonomic, structural and functional biodiversity: Local to ecosystem perspectives[J]. Ecological Indicators, 2016, 70:317-339.
[11] 刘纪远, 张增祥, 徐新良, 等. 21世纪初中国土地利用变化的空间格局与驱动力分析[J] 地理学报, 2009, 64(12):1411-1420.
[11] [ Liu Jiyuan, Zhang Zengxiang, Xu Xinliang, et al. Spatial patterns and driving forces of land use change in China in the early 21st century[J]. Acta Geographica Sinica, 2009, 64(12):1411-1420. ]
[12] 刘纪远, 宁佳, 匡文慧, 等. 2010—2015年中国土地利用变化的时空格局与新特征[J]. 地理学报, 2018, 73(5):789-802.
[12] [ Liu Jiyuan, Ning Jia, Kuang Wenhui, et al. Spatio-temporal patterns and characteristics of land-use change in China during 2010-2015[J]. Acta Geographica Sinica, 2018, 73(5):789-802. ]
[13] Li Y, Liu M, Liu X, et al. Characterising three decades of evolution of forest spatial pattern in a major coal-energy province in northern China using annual Landsat time series[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 95:102254.
[14] 朱青, 周自翔, 刘婷, 等. 黄土高原植被恢复与生态系统土壤保持服务价值增益研究——以延河流域为例[J]. 生态学报, 2021, 41(7):2557-2570.
[14] [ Zhu Qing, Zhou Zixiang, Liu Ting, et al. Vegetation restoration and ecosystem soil conservation service value increment in Yanhe Watershed, Loess Plateau[J]. Acta Ecologica Sinica, 2021, 41(7):2557-2570. ]
[15] Anaya J A, Chuvieco E, Palacios-Orueta A. Aboveground biomass assessment in Colombia: A remote sensing approach[J]. Forest Ecology and Management, 2009, 257(4):1237-1246.
[16] 陈学兄, 毕如田, 张小军, 等. 太原市城区植被覆盖变化地形分异效应[J]. 水土保持通报, 2020, 40(5):299-309.
[16] [ Chen Xuexiong, Bi Rutian, Zhang Xiaojun, et al. Topographic differentiation effect on vegetation cover change in urban districts of Taiyuan City[J]. Bulletin of Soil and Water Conservation, 2020, 40(5):299-309. ]
[17] 焦雄, 郭忠录, 郝好鑫. 宁都县植被覆盖度变化及其对地形因子的响应分析[J]. 中国水土保持, 2020, 41(11):32-35, 7.
[17] [ Jiao Xiong, Guo Zhonglu, Hao Haoxin. Analysis on vegetation coverage change and its response to topographic factors in Ningdu County[J]. Soil and Water Conservation in China, 2020, 41(11):32-35, 7. ]
[18] 刘明霞, 刘友存, 陈明, 等. 2000—2018年赣江上游植被覆盖度时空演化及其对气候变化的响应[J]. 水土保持通报, 2020, 40(5):284-290.
[18] [ Liu Mingxia, Liu Youcun, Chen Ming, et al. Spatiotemporal evolution of vegetation coverage and its response to climate change in upper reaches of Ganjiang River Basin during 2000-2018[J]. Bulletin of Soil and Water Conservation, 2020, 40(5):284-290. ]
[19] 李苗苗. 植被覆盖度的遥感估算方法研究[D]. 北京: 中国科学院遥感与数字地球研究所, 2003.
[19] [ Li Miaomiao. The Method of Vegetation Fraction Estimation by Remote Sensing[D]. Beijing: Institute of Remote Sensing and Digital Earth Chinese Academy of Sciences, 2003. ]
[20] 陈永国, 刘维军, 荣月静, 等. 基于土地利用与植被覆盖度的大通北川河源区自然保护区生境质量评估[J]. 水土保持研究, 2020, 27(6):332-337, 393.
[20] [ Chen Yongguo, Liu Weijun, Rong Yuejing, et al. Assessment on habitat quality of Datong Beichuan River Source Area Nature Reserve based on land use and vegetation coverage[J]. Research of Soil and Water Conservation, 2020, 27(6):332-337, 393. ]
[21] 李理, 朱连奇, 朱文博, 等. 生态系统服务价值与人类活动强度关联性分析及权衡——以淇河流域为例[J]. 中国环境科学, 2020, 40(1):365-374.
[21] [ Li Li, Zhu Lianqi, Zhu Wenbo, et al. The correlation between ecosystem service value and human activity intensity and its trade-offs: Take Qihe River basin for example[J]. China Environmental Science, 2020, 40(1):365-374. ]
[22] 胡文浩, 张晓婧, 陈雅杰, 等. 坝上地区不同年代退耕还林生境的草本层植物多样性及影响因子[J]. 生态学报, 2021, 41(3):1116-1126.
[22] [ Hu Wenhao, Zhang Xiaojing, Chen Yajie, et al. Herb diversity and its impact factors in different periods from 1970s to 2000s of the returning farmland to forest project in the Bashang Area of North China[J]. Acta Ecologica Sinica, 2021, 41(3):1116-1126. ]
[23] 包玉斌. 基于InVEST模型的陕北黄土高原生态服务功能时空变化研究[D]. 西安: 西北大学, 2015.
[23] [ Bao Yubin. Temporal and Spatial Change of Ecological Services on Loess Plateau of Shaanxi by InVEST model[D]. Xi’an: Northwest University, 2015. ]
[24] 薛卓彬. 基于InVEST模型的延河流域生态系统服务功能评估[D]. 西安: 西北大学, 2017.
[24] [ Xue Zhuobin. The Assessment of Ecosystem Services Functions in Yanhe River Based on the InVEST Model[D]. Xi’an: Northwest University, 2017. ]
[25] 姚云长. 基于InVEST模型的三江平原生境质量评价与动态分析[D]. 北京: 中国科学院大学, 2017.
[25] [ Yao Yunchang. Evaluation and Dynamics Analysis of Habitat Quality Based on InVEST Model in the Sanjiang Plain[D]. Beijing: University of Chinese Academy of Sciences, 2017. ]
[26] 侯孟阳, 姚顺波, 邓元杰, 等. 格网尺度下延安市生态服务价值时空演变格局与分异特征——基于退耕还林工程的实施背景[J]. 自然资源学报, 2019, 34(3):539-552.
[26] [ Hou Mengyang, Yao Shunbo, Deng Yuanjie, et al. Spatial-temporal evolution pattern and differentiation of ecological service value in Yan’an city at the grid scale based on Sloping Land Conversion Program[J]. Journal of Natural Resources, 2019, 34(3):539-552. ]
[27] 赵晓冏, 王建, 苏军德, 等. 基于InVEST模型和莫兰指数的甘肃省生境质量与退化度评估[J]. 农业工程学报, 2020, 36(18):301-308.
[27] [ Zhao Xiaojiong, Wang Jian, Su Junde, et al. Assessment of habitat quality and degradation degree based on InVEST model and Moran index in Gansu Province, China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(18):301-308. ]
[28] 路中, 雷国平, 郭一洋, 等. 不同空间尺度松嫩平原土地利用强度变化及其对气候因子的影响[J]. 生态学报, 2021, 41(5):1894-1906.
[28] [ Lu Zhong, Lei Guoping, Guo Yiyang, et al. Changes of land use intensity in the Songnen Plain of different spatial scales and their effects on climatic factors[J]. Acta Ecologica Sinica, 2021, 41(5):1894-1906. ]
[29] 徐勇, 孙晓一, 汤青. 陆地表层人类活动强度: 概念、方法及应用[J]. 地理学报, 2015, 70(7):1068-1079.
[29] [ Xu Yong, Sun Xiaoyi, Tang Qing. Human activity intensity of land surface: Concept, method and application in China[J]. Acta Geographica Sinica, 2015, 70(7):1068-1079. ]
[30] 王晓妹, 吴九兴. 区域土地集约利用程度及其时空差异研究——以安徽省11个地级市为样本[J]. 土壤通报, 2016, 47(6):1294-1299.
[30] [ Wang Xiaomei, Wu Jiuxing. Intensive utilization degree of regional land and its temporal and spatial variation: Taking 11 prefecture-level cities in Anhui Province as samples[J]. Chinese Journal of Soil Science, 2016, 47(6):1294-1299. ]
[31] 吴艳艳, 吴志峰, 余世孝. 定量评价人类活动对净初级生产力的影响[J]. 应用生态学报, 2017, 28(8):2535-2544.
[31] [ Wu Yanyan, Wu Zhifeng, Yu Shixiao. Quantitative assessment of the impacts of human activities on net primary productivity[J]. Chinese Journal of Applied Ecology, 2017, 28(8):2535-2544. ]
[32] Bai J, Zhou Z, Zou Y, et al. Watershed drought and ecosystem services: spatiotemporal characteristics and gray relational analysis[J]. ISPRS International Journal of Geo-Information, 2021, 10(2):43.
文章导航

/