天气与气候

黄河上游河源区不同量级降水对径流变化的影响

展开
  • 1.青海省气象服务中心,青海 西宁810001
    2.青海省气象干部培训学院,青海 西宁810001
    3.青海省气候中心,青海 西宁810001
保广裕(1967-),男,正高级工程师,主要从事专业气象预报和服务研究. E-mail: 985022892@qq.com

收稿日期: 2020-07-31

  修回日期: 2020-10-01

  网络出版日期: 2021-06-17

基金资助

青海省基础研究计划项目(2021-ZJ-762)

Research on effects of different precipitation magnitudes on runoff changes in the headwater region of the upper Yellow River

Expand
  • 1. Qinghai Meteorological Service Center, Xining 810001, Qinghai, China
    2. Qinghai Meteorological Cadre Training Institute, Xining 810001, Qinghai, China
    3. Qinghai Climate Center, Xining 810001, Qinghai, China

Received date: 2020-07-31

  Revised date: 2020-10-01

  Online published: 2021-06-17

摘要

利用1961—2019年黄河上游河源区13个气象观测站逐日地面降水和唐乃亥水文站径流量数据,采用统计分析方法分析黄河上游河源区不同量级降水对径流变化的影响,研究表明:(1) 黄河上游河源区1961—2019年降水量变化率为7.57 mm·(10a)-1。尤其是进入21世纪,黄河上游河源区气候暖湿化加快,降水量呈显著性增加趋势;(2) 1961—2000年黄河上游河源区各地年总降水量、≥5.0 mm、≥10.0 mm、≥25.0 mm的降水量呈微弱增加趋势,而2001—2019年呈显著增加趋势,分别增加5.1%、6.9%、7.4%、15.0%;(3) 1961—2019年黄河上游河源区≥5.0 mm、≥10.0 mm、≥25.0 mm降水贡献率分别为71%、43%、7%,呈增加趋势,2001—2019年比1961—2000年降水量贡献率分别增加了1.5%、1.2%、0.8%;(4) 年降水量与年径流量变化成显著正相关,年总降水量、≥5 mm、≥10 mm和≥25 mm年降水量与年径流量也成显著正相关,是年径流量增加(减少)的主要气候因子。

本文引用格式

保广裕,乜虹,戴升,燕振宁,杨春华,代青措 . 黄河上游河源区不同量级降水对径流变化的影响[J]. 干旱区研究, 2021 , 38(3) : 704 -713 . DOI: 10.13866/j.azr.2021.03.12

Abstract

Daily surface precipitation data from 13 meteorological observation stations in the headwater region of the Yellow River upper reaches from 1961 to 2019 and runoff data from Tangnaihai hydrological station were used to study the influence of different precipitation magnitudes on runoff changes in the upper reaches of the Yellow River. This research showed that: (1) the precipitation change rate in the headwater region of the Yellow River upper reaches from 1961 to 2019 was 7.57 mm·(10a)-1. Especially in the 21st century, climate warming and humidification in the headwater region of the Yellow River upper reaches have accelerated, and precipitation has shown a significant increase. (2) The annual total precipitation, precipitation more than 5.0 mm, more than 10.0 mm and more than 25.0 mm in the upper reaches of the Yellow River showed a slight increasing trend from 1961 to 2000, while the annual precipitation increased by 5.1%, 6.9%, 7.4% and 15.0% from 2001 to 2019, respectively. (3) From 1961 to 2019, the contribution rates of more than 5.0 mm, more than 10.0 mm and more than 25.0 mm in the upper reaches of the Yellow River were 71%, 43% and 7%, respectively, showing an increasing trend. Compared with 1961-2000, the contribution rates of precipitation from 2001 to 2019 increased by 1.5%, 1.2% and 0.8%, respectively. (4) Annual precipitation is significantly positively correlated with annual runoff, annual total precipitation, annual precipitation more than 5 mm, annual precipitation more than 10 mm and annual precipitation more than 25 mm are also significantly positively correlated with annual runoff, which are the main climatic factors for the increase (decrease) of annual runoff.

参考文献

[1] 王欢. 近60年黄河源区流量变化特征及其影响因子的研究[D]. 南京: 南京信息工程大学, 2014.
[1] [ Wang Huan. The Research of Variation and Impact Factor of the Runoff in Source Region of the Yellow River Nearly 60 years[D]. Nanjing: Nanjing University of Information Science and Technology, 2014. ]
[2] 李二辉, 穆兴民, 赵广举. 1919—2010年黄河上中游区径流量变化分析[J]. 水科学进展, 2014,25(2):155-163.
[2] [ Li Erhui, Mu Xingmin, Zhao Guangju. Temporal changes in annual runoff and influential factors in the upper and middle reaches of Yellow River from 1919-2010[J]. Advances in Water Science, 2014,25(2):155-163. ]
[3] 郭西军, 郝岩浩, 赵俊麟. 气候变暖对黄河源区水文要素变化影响初步分析[J]. 农业科技与信息, 2016,29(5):133-134.
[3] [ Guo Xijun, Hao Yanhao, Zhao Junlin. Preliminary analysis of the impact of climate warming on the changes of hydrological elements in the source region of the Yellow River[J]. Agricultural Technology and Information, 2016,29(5):133-134. ]
[4] 李林, 申红艳, 戴升. 黄河源区径流对气候变化的响应及未来趋势预测[J]. 地理学报, 2011,66(9):1261-1269.
[4] [ Li Lin, Shen Hongyan, Dai Sheng, et al. Response of runoff to climate change and its future tendency in the source region of Yellow River[J]. Acta Geographica Sinaca, 2011,66(9):1261-1269. ]
[5] 蓝永超, 刘根生, 喇承芳, 等. 近55年来黄河河源区径流的变化及区域差异[J]. 山地学报, 2017,35(3):257-265.
[5] [ Lan Yongchao, Liu Gensheng, La Chengfang, et al. Study on the characteristics and trend of runoff change in the source region of the Yellow River and its regional difference[J]. Mountain Research, 2017,35(3):257-265. ]
[6] 王亚迪, 权全, 薛涛涛, 等. 气候变化对黄河源区的水文影响分析[J]. 水资源研究, 2018,40(2):135-143.
[6] [ Wang Yadi, Quan Quan, Xue Taotao, et al. Hydrological impact of climate change on the source region of the Yellow River[J]. Journal of Water Resources Research, 2018,40(2):135-143. ]
[7] 王素萍, 宋连春, 韩永翔, 等. 玛曲气候变化对生态环境的影响[J]. 冰川冻土, 2006,28(4):556-561.
[7] [ Wang Suping, Song Lianchun, Han Yongxiang, et al. Impacts of climate change on ecological environment in Maqu grassland[J]. Journal of Glaciology and Geocryology, 2006,28(4):556-561. ]
[8] 段水强, 刘弢, 曹广超, 等. 近期长江源区湖泊扩张特征及其成因[J]. 干旱区研究, 2015,32(1):15-22.
[8] [ Duan Shuiqiang, Liu Tao, Cao Guangchao, et al. Expansion of the lakes and its causes in the source region of the Yangtze River[J]. Arid Zone Research, 2015,32(1):15-22. ]
[9] 杨春华, 燕振宁, 周丹, 等. 1967—2016年黄河上游河曲地区降水变化特征研究[J]. 沙漠与绿洲气象, 2020,14(2):43-49.
[9] [ Yang Chunhua, Yan Zhenning, Zhou Dan, et al. Precipitation change characteristics in the upper reaches of the Yellow River during 1967-2016[J]. Desert and Oasis Meteorology, 2020,14(2):43-49. ]
[10] 白爱娟, 黄融, 程志刚, 等. 气候变暖情景下的青海湖水位变化[J]. 干旱区研究, 2014,31(5):793-797.
[10] [ Bai Aijuan, Huang Rong, Cheng Zhigang. Change of water level of the Qinghai Lake under climate warming[J]. Arid Zone Research, 2014,31(5):793-797. ]
[11] 王欢, 李栋梁, 蒋元春. 1956—2012年黄河源区流量演变的新特征及其成因[J]. 冰川冻土, 2014,36(2):403-412.
[11] [ Wang Huan, Li Dongliang, Jiang Yuanchun. Characteristics and reasons of the runoff variation in source regions of the Yellow River during 1956-2012[J]. Journal of Glaciology and Geocryology, 2014,36(2):40-412. ]
[12] 周陈超, 贾绍凤, 燕华云, 等. 近50年以来青海省水资源变化趋势分析[J]. 冰川冻土, 2005,27(3):432-437.
[12] [ Zhou Chenchao, Jia Shaofeng, Yan Huayun, et al. Changing trend of water resources in Qinghai Province from 1956 to 2000[J]. Journal of Glaciology and Geocryology, 2005,27(3):432-437. ]
[13] 张建云, 王国庆. 气候变化对水文水资源研究影响[M]. 北京: 科学出版社, 2007.
[13] [ Zhang Jianyun, Wang Guoqing. Impact of Climate Change on Hydrology and Water Resources Research[M]. Beijing: Science Press, 2007. ]
[14] 周帅, 王义民, 郭爱军, 等. 气候变化和人类活动对黄河源区径流影响的评估[J]. 西安理工大学学报, 2018,34(2):205-210.
[14] [ Zhou Shuai, Wang Yimin, Guo Aijun, et al. Assessment on impacts of climate change and human activities on runoff in source region of the Yellow River[J]. Journal of Xi’an University of Technology, 2018,34(2):205-210. ]
[15] 常国刚, 李林, 朱西德, 等. 黄河源区地表水资源变化及其影响因子[J]. 地理学报, 2007,62(3):312-320.
[15] [ Chang Guogang, Li Lin, Zhu Xide, et al. Changes and influencing factors of surface water resources in the source region of the Yellow River[J]. Acta Geographica Sinica, 2007,62(3):312-320. ]
[16] 许君利, 张世强, 上官冬辉. 30a来长江源区冰川变化遥感监测[J]. 干旱区研究, 2013,30(5):919-926.
[16] [ Xu Junli, Zhang Shiqiang, Shangguan Donghui. Glacier change in headwaters of the Yangtze River in recent three decades[J]. Arid Zone Research, 2013,30(5):919-926. ]
[17] 魏凤英. 现代气候统计诊断与预测技术[M]. 北京: 气象出版社, 2008.
[17] [ Wei Fengying. Modern Climate Statistics Diagnosis and Prediction Technology[M]. Beijing: Meteorological Press, 2008. ]
[18] 周丹. 1961—2013年华北地区气象干旱时空变化特征及其成因分析[D]. 兰州: 西北师范大学, 2015.
[18] [ Zhou Dan. Spatio-temporal Changes and the Cause Analysis of Meteorological Drought in North China from 1961 to 2013[D]. Lanzhou: Northwest Normal University, 2015. ]
[19] 丁裕国, 江志红. 极端气候研究方法导论[M]. 北京: 气象出版社, 2009.
[19] [ Ding Yuguo, Jiang Zhihong. Introduction to Extreme Climate Research Methods[M]. Beijing: Meteorological Press, 2009. ]
[20] 冯晓莉, 申红艳, 李万志, 等. 1961—2017年青藏高原暖湿季节极端降水时空变化特征[J]. 高原气象, 2020,39(4):694-705.
[20] [ Feng Xiaoli, Shen Hongyan, Li Wanzhi, et al. Spatiotemporal changes for extreme precipitation in wet season over the Qinghai-Tibetan Plateau and the surroundings during 1961-2017[J]. Plateau Meteorology, 2020,39(4):694-705. ]
[21] Wu Z H, Huang N E. Ensemble empirical mode decomposition: A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009,1(1):1-41.
[22] 张士锋, 贾绍凤, 刘昌明, 等. 黄河源区水循环变化规律及其影响[J]. 中国科学(技术科学), 2004,39(增刊):117-125.
[22] [ Zhang Shifeng, Jia Shaofeng, Liu Changming, et al. The water circulation change rule and its influence in the source area of the Yellow River[J]. Scientia Sinica(Technologica), 2004,39(Suppl. ): 117-125. ]
[23] 苏贤保. 黄河上游径流复杂性多尺度特征及其驱动机制研究[D]. 兰州: 兰州大学, 2019.
[23] [ Su Xianbao. Research on the Multi-scale Characteristic of Runoff Complexity and It’s Driving Mechanism in the Upper Reaches of the Yellow River[D]. Lanzhou: Lanzhou University, 2019. ]
[24] 叶培龙, 张强, 王莺, 等. 1980—2018年黄河上游气候变化及其对生态植被和径流量的影响[J]. 大气科学学报, 2020,43(6):967-979.
[24] [ Ye Peilong, Zhang Qiang, Wang Ying, et al. Characteristics of climate change in the upper Yellow River basin and its influence on vegetation and runoff during recent 40 Years[J]. Transactions of Atmospheric Sciences, 2020,43(6):967-979. ]
文章导航

/