生态与环境

多特征辅助下的GF-6 WFV影像准噶尔山楂识别研究

展开
  • 1.新疆师范大学地理科学与旅游学院,新疆 乌鲁木齐 8300054
    2.乌鲁木齐空间遥感应用研究所,新疆 乌鲁木齐 830054
    3.额敏县自然资源局,新疆 塔城 834600
    4.北京林业大学林学院,北京 100083
    5.中国林业科学研究院森林生态环境与保护研究所,北京 100091
陈春秀(1992-),女,硕士研究生,主要从事资源环境遥感和空间信息提取. E-mail:444838693@qq.com

收稿日期: 2020-12-03

  修回日期: 2021-01-27

  网络出版日期: 2021-04-25

基金资助

国家重点研发计划《天山北坡退化野果林生态保育与健康调控技术》项目资助(2016YFC0501500)

Crataegus songarica recognition using Gaofen-6 wide-field-view data assisted by multiple features

Expand
  • 1. College of Geography and Tourism, Xinjiang Normal University, Urumqi 830054, Xinjiang, China
    2. Urumqi Institute of Spatial Remote Sensing Applications, Urumqi 830054, Xinjiang, China
    3. Emin County Bureau of Natural Resources, Tarbagatay 834600, Xinjiang, China
    4. Forestry Institute, Beijing Forestry University, Beijing 100083, China
    5. Institute of Forest Ecological Environment and Protection, Chinese Academy of Forestry Sciences, Beijing 100091, China

Received date: 2020-12-03

  Revised date: 2021-01-27

  Online published: 2021-04-25

摘要

针对高分六号WFV数据应用研究基础相对薄弱,准噶尔山楂遥感识别在算法、数据源等方面存在不足的问题,联合GF-6 WFV和ZY-3号影像数据提取多种分类特征,基于面向对象分割、特征选择、特征重要性评价与组合以及多分类器联合等方法对准噶尔山楂的遥感识别开展研究,提出优选特征辅助下的面向对象多分类器组合的准噶尔山楂识别算法。研究表明:(1) GF-6 WFV数据能够很好的对准噶尔山楂进行识别,特别是新增的红边波段对树种识别具有重要作用;(2) 面向对象分割、特征选择和多特征组合都对准噶尔山楂识别的精度具有正向提升作用;(3) 多分类器组合算法能够弥补单一分类器表征力差异造成的误差,显著提高识别精度和算法的稳定性。

本文引用格式

陈春秀,陈蜀江,徐世薇,陈孟禹,贾翔,黄铁成,李春蕾 . 多特征辅助下的GF-6 WFV影像准噶尔山楂识别研究[J]. 干旱区研究, 2021 , 38(2) : 553 -561 . DOI: 10.13866/j.azr.2021.02.27

Abstract

Our ability to extract spatial distribution information for Crataegus songarica by remote sensing is relatively weak, and the performance of a single algorithm in information extraction is different. To address this problem, we explored the application potential of domestic Gaofen-6 (GF-6) wide-field-view (WFV) data in tree species recognition in arid and semi-arid areas. Using GF-6 WFV and Ziyuan-3 (ZY-3) data, we constructed a combined classifier recognition algorithm with multi-feature assistance. First, we combined a linear spectral clustering algorithm for ZY-3 data super-pixel segmentation with the sample set to determine the optimal scale, avoid the salt-and-pepper phenomenon and improve the recognition accuracy. Second, we extracted spectral features, texture features, and vegetation index features based on multi-source data, using the recursive feature elimination method to select classification features. Feature importance was evaluated based on the mean decrease impurity to construct the optimal classification feature set, improve the separability between feature classes, and reduce the redundancy between features. Finally, we constructed a weight-adaptive voting combination classifier based on the support vector machine algorithm and random forest algorithm. Combined with a variety of classification schemes, the spatial distribution of Crataegus songarica was extracted and verified to evaluate the influence of object-oriented algorithm, multi-classifier combination algorithm, and feature selection on the classification accuracy. The results showed that GF-6 WFV data can be used to identify Crataegus songarica and have great application potential in forestry production. Compared with GF-1 WFV, two new red-edge bands of GF-6 WFV play an important role in the identification of Crataegus songarica. Compared with traditional pixel-based methods, the object-based recognition of Crataegus songarica effectively mitigated the pepper salt phenomenon and significantly improved the recognition accuracy, algorithm efficiency, and robustness. Moreover, the feature selection effectively reduced the redundancy between classification features and improved the computational efficiency and algorithm stability; the selected features significantly improved the accuracy. Using a weight-adaptive multi-classifier voting combination algorithm can integrate the advantages of different algorithms, effectively avoid the partial ‘confusion’ caused by the representation force difference of the single classifier, and improve the recognition accuracy.

参考文献

[1] 杨蕾, 吕海英, 李进, 等. 新疆天山野果林准噶尔山楂种群结构与动态分析[J]. 西北植物学报, 2018,38(12):2314-2323.
[1] [ Yang Lei, Lyu Haiying, Li Jin, et al. Structure and dynamic analysis of Crataegus songarica K. Koch population in Tianshan wild fruit forest of Xinjiang[J]. Acta Botanica Boreali-Occidentalia Sinica, 2018,38(12):2314-2323. ]
[2] 盛芳, 陈淑英, 田嘉, 等. 新疆准噶尔山楂不同居群的遗传多样性[J]. 生物多样性, 2017,25(5):518-530.
[2] [ Sheng Fang, Chen Shuying, Tian Jia, et al. Genetic diversity of Crataegus songorica in Xinjiang[J]. Biodiversity Science, 2017,25(5):518-530. ]
[3] 邬亚娟, 刘廷玺, 童新, 等. 基于面向对象的干旱半干旱地区植被分类[J]. 干旱区研究, 2020,37(4):1026-1034.
[3] [ Wu Yajuan, Liu Tingxi, Tong Xin, et al. Vegetation classification in arid and semi-arid areas based on object-oriented method[J]. Arid Zone Research, 2020,37(4):1026-1034. ]
[4] 樊雪, 刘清旺, 谭炳香. 基于机载PHII高光谱数据的森林优势树种分类研究[J]. 国土资源遥感, 2017,29(2):110-116.
[4] [ Fan Xu, Liu Qingwang, Tan Bingxiang. Classification of forest species using airborne PHII hyperspectral data[J]. Remote Sensing for Land and Resources, 2017,29(2):110-116. ]
[5] 赵希妮, 王磊, 刘雅清, 等. 基于GF-1/WFV时间序列的葡萄识别模型——以宁夏红寺堡区为例[J]. 干旱区研究, 2019,36(3):630-638.
[5] [ Zhao Xini, Wang Lei, Liu Yaqing, et al. Grape recognition model based on GF-1 / WFV time series: A case study of hongsipao District, Ningxia[J]. Arid Zone Research, 2019,36(3):630-638. ]
[6] Koukal T, Atzberger C, Schneider W. Evaluation of semi-empirical BRDF models inverted against multi-angle data from a digital airborne frame camera for enhancing forest type classification[J]. Remote Sensing of Environment, 2014,151:27-43.
[7] Yang X H, Rochdi N, Zhang J K, et al. Mapping tree species in a boreal forest area using RapidEye and Lidar data[J]. International Geoscience and Remote Sensing Symposium, 2014: 69-71.
[8] Yuan Q Q, Shen H F, Li T W, et al. Deep learning in environmental remote sensing: Achievements and challenges[J]. Remote Sensing of Environment, 2020,241:111716.
[9] 栗旭升, 李虎, 陈冬花, 等. 联合GF-5与GF-6卫星数据的多分类器组合亚热带树种识别[J]. 林业科学, 2020,56(10):93-104.
[9] [ Li Xusheng, Li Hu, Chen Donghua, et al. Multiple classifiers combination method for tree species identification based on GF-5 and GF-6[J]. Scientia Silvae Sinicae, 2020,56(10):93-104. ]
[10] 王怀警, 谭炳香, 王晓慧, 等. 多分类器组合森林类型精细分类[J]. 遥感信息, 2019,34(2):107-115.
[10] [ Wang Huaijing, Tan Binxiang, Wang Xiaohui, et al. Multiple classifiers combination method for precise classification of forest type[J]. Remote Sensing Information, 34(2):107-115. ]
[11] 刘怡君, 庞勇, 廖声熙, 等. 机载LiDAR和高光谱融合实现普洱山区树种分类[J]. 林业科学研究, 29(3):407-412.
[11] [ Liu Yijun, Pang Yong, Liao Shengxi, et al. Merged airborne LiDAR and hyperspectral data for tree species classification in puer’s mountainous area[J]. Forest Research, 2016,29(3):407-412. ]
[12] 刘丽娟, 庞勇, 范文义, 等. 机载LiDAR和高光谱融合实现温带天然林树种识别[J]. 遥感学报, 2013,17(3):679-695.
[12] [ Liu Lijuan, Pang Yong, Fan Wenyi, et al. Fused airborne LiDAR and hyperspectral data for tree species identification in a natural temperate forest[J]. Journal of Remote Sensing, 2013,17(3):679-695. ]
[13] 刘雅清, 王磊, 赵希妮, 等. 基于GF-1/WFV时间序列的绿洲作物类型提取[J]. 干旱区研究, 2019,36(3):781-789.
[13] [ Liu Yaqing, Wang Lei, Zhao Xini, et al. Extraction of crops in oasis based on GF-1/WFV time series[J]. Arid Zone Research, 2019,36(3):781-789. ]
[14] 李利平, 海鹰, 安尼瓦尔·买买提, 等. 新疆伊犁地区野果林的群落特征及保护[J]. 干旱区研究, 2011,28(1):60-66.
[14] [ Li Liping, Hai Ying, Anwar Mohammat, et al. Community structure and conservation of wild fruit forests in the Ili Valley, Xinjiang[J]. Arid Zone Research, 2011,28(1):60-66. ]
[15] 宋熙煜, 周利莉, 李中国, 等. 图像分割中的超像素方法研究综述[J]. 中国图象图形学报, 2015,20(5):599-608.
[15] [ Song Xiyu, Zhou Lili, Li Zhongguo, et al. Review on superpixel methods in image segmentation[J] Journal of Image and Graphics, 2015,20(5):599-608. ]
文章导航

/