红砂幼苗生长及根系形态特征对干旱-复水的响应
收稿日期: 2020-06-16
修回日期: 2020-08-23
网络出版日期: 2021-04-25
基金资助
国家自然科学基金(31560135);甘肃农业大学学科建设专项(GAU-XKJS-2018-104);甘肃省重点研发计划项目(17YF1WA161);甘肃省林业科技创新与国际合作资金(GLC2019-418-8);对发展中国家常规性科技援助项目(KY202002011);甘肃省科技创新基地与人才计划(17JR7WA018)
Response of growth and root morphological characteristics of Reaumuria soongorica seedlings to drought-rehydration
Received date: 2020-06-16
Revised date: 2020-08-23
Online published: 2021-04-25
植物对干旱的适应能力不仅包括干旱胁迫期间的抗旱能力,也包括复水之后的恢复能力,因此,开展干旱复水条件下植物幼苗生长及根系形态特征变化规律的研究,对揭示植物抗旱生理机制具有重要意义。通过盆栽控水进行干旱胁迫和复水处理,测定了干旱-复水条件下红砂幼苗基径、株高、生物量以及根系形态指标,分析了其生长、生物量分配及根系形态特征对干旱-复水的响应。结果表明:(1) 与适宜水分相比,干旱胁迫下红砂幼苗基径和株高相对增量以及地上、地下和总生物量显著减小(P<0.01),各干旱胁迫下红砂幼苗基径相对增量随时间增加呈现减小的变化趋势;复水后中度和重度胁迫处理下红砂幼苗基径和株高相对增量较大,表明红砂幼苗在较严重的干旱胁迫下复水时,其地上部分恢复生长更快;(2) 与适宜水分相比,干旱胁迫下红砂幼苗比根长显著增加(P<0.01),表明红砂幼苗可通过根系伸长生长以适应干旱胁迫;复水后重度干旱胁迫处理下红砂幼苗总根长、根表面积和总根体积减小,而红砂幼苗根系直径显著增加(P<0.01),表明红砂幼苗在重度胁迫处理下根系恢复力减弱。综上所述,干旱胁迫期间红砂幼苗通过加快基径和根系的生长储存更多物质来应对胁迫环境,从而表现出较强的抵抗力;复水后红砂幼苗通过加快地上部分生长和根系直径与比根长的增大来恢复生长,有助于提高其较强的恢复能力。
杨彪生,单立山,马静,解婷婷,杨洁,韦昌林 . 红砂幼苗生长及根系形态特征对干旱-复水的响应[J]. 干旱区研究, 2021 , 38(2) : 469 -478 . DOI: 10.13866/j.azr.2021.02.18
Plant adaptation to drought includes drought resistance during drought stress and recovery after rehydration following drought stress. Therefore, it is essential to understand the physiological mechanism of plant drought resistance by studying changes in seedling growth and root morphological characteristics under drought and rehydration conditions. In this experiment, drought stress and rehydration were emulated by controlling the soil moisture of potted plants. The basal diameter, plant height, biomass, and root morphological indices of Reaumuria soongorica seedlings under drought-rehydration conditions were determined, and the responses of their growth, biomass distribution, and root morphological characteristics to drought-rehydration were analyzed. Compared with the appropriate water content, the relative increment of basal diameter and plant height, the aboveground, underground, and total biomass of R. soongorica seedlings were significantly reduced under drought stress (P<0.01). The relative increment of the basal diameter of R. soongorica seedlings under drought stress showed a decreasing trend with time. The relative increments of the basal diameter and plant height of R. soongorica seedlings were larger under moderate and severe stress after rehydration, which indicated that the aboveground part of R. soongorica seedlings grew faster after rehydration under severe drought stress. Additionally, compared with the suitable water, the specific root length of R. soongorica seedlings increased significantly under drought stress (P<0.01), indicating that R. soongorica seedlings could adapt to drought stress by elongating their roots. After rehydration, the total root length, root surface area, and total root volume of R. soongorica seedlings decreased, while the root diameter of R. soongorica seedlings increased (P<0.01), indicating that the root resilience of R. soongorica seedlings was weakened under severe stress. In summary, during drought stress, R. soongorica seedlings responded to the stress environment by accelerating the growth of their basal diameter and roots and storing more substances, showing stronger resistance. After rehydration, R. soongorica seedlings were restored by accelerating the growth of their overground parts and increasing root diameter and specific root length, which was helpful to improve their strong recovery ability.
[1] | 夏振华, 陈亚宁, 朱成刚, 等. 干旱胁迫环境下的胡杨叶片气孔变化[J]. 干旱区研究, 2018,35(5):1111-1117. |
[1] | [ Xia Zhenhua, Chen Yaning, Zhu Chenggang, et al. Stomatal change in leaves of Population euphratica under drought stress[J]. Arid Zone Research, 2018,35(5):1111-1117. ] |
[2] | Dias P C, Araujo W L, Moraes G A, et al. Morphological and physiological responses of two coffee progenies to soil water availability[J]. Journal of Plant Physiology, 2007,164(12):1639-1647. |
[3] | Guo W, Li B, Zhang X, et al. Architectural plasticity and growth responses of Hippophae rhamnoides and Caragana intermedia seedlings to simulated water stress[J]. Journal of Arid Environments, 2007,69(3):385-399. |
[4] | 黄海霞, 连转红, 王亮, 等. 裸果木渗透调节物质和抗氧化酶活性对干旱的响应[J]. 干旱区研究, 2020,37(1):227-235. |
[4] | [ Huang Haixia, Lian Zhuanhong, Wang Liang, et al. Response of osmotic regulation substances and antioxidant enzyme activity in leaves of Gymnocarpos przewalskii to drought[J]. Arid Zone Research, 2020,37(1):227-235. ] |
[5] | 许令明, 曹昀, 汤思文, 等. 干旱胁迫及复水对花叶芦竹生理特性的影响[J]. 中国水土保持科学, 2020,18(3):59-66. |
[5] | [ Xu Lingming, Cao Jun, Tang Siwen, et al. Effects of drought stress and rewatering on physiological characteristics of Arundo donax var. versicolor[J]. Science of Soil and Water Conservation, 2020,18(3):59-66. ] |
[6] | 段启英, 田野, 鄂晓伟, 等. 南方型黑杨生长和生理特性对持续干旱和复水响应的性别差异[J]. 生态学杂志, 2020,39(7):2140-2150. |
[6] | [ Duan Qiying, Tian Ye, E Xiaowei, et al. Gender differences in response to persistent drought and rehydration by growth and physiological characteristics of southern type black poplar[J]. Chinese Journal of Ecology, 2020,39(7):2140-2150. ] |
[7] | 刘球, 吴际友, 李志辉. 干旱胁迫对植物叶片解剖结构影响研究进展[J]. 湖南林业科技, 2015,42(3):101-104. |
[7] | [ Liu Qiu, Wu Jiyou, Li Zhihui. Research progress on leaf anatomical structures of plants under drought stress[J]. Hunan Forestry Science & Technology, 2015,42(3):101-104. ] |
[8] | 朱维琴, 吴良欢, 陶勤南. 作物根系对干旱胁迫逆境的适应性研究进展[J]. 土壤与环境, 2002,11(4):430-433. |
[8] | [ Zhu Weiqin, Wu Lianghuan, Tao Qinnan. Research progress on the adaptability of crop root system to drought stress[J]. Soil and Environmental Sciences, 2002,11(4):430-433. ] |
[9] | 李文娆, 张岁岐, 丁圣彦, 等. 干旱胁迫下紫花苜蓿根系形态变化及与水分利用的关系[J]. 生态学报, 2010,30(19):5140-5150. |
[9] | [ Li Wenrao, Zhang Suiqi, Ding Shengyan, et al. Morphological changes of alfalfa roots under drought stress and their relationship with water use[J]. Acta Ecologica Sinica, 2010,30(19):5140-5150. ] |
[10] | 周欢欢. 干旱胁迫及复水对波叶金桂生理生化的影响[D]. 杭州: 浙江农林大学, 2019. |
[10] | [ Zhou Huanhuan. Effects of Drought Stress and Rewatering on Physiological Characteristics of Osmanthus Fragrans ‘Boyejingui’[D]. Hangzhou: Zhejiang A&F University, 2019. ] |
[11] | 王宁, 袁美丽, 陈浩, 等. 干旱胁迫及复水对入侵植物节节麦幼苗生长及生理特性的影响[J]. 草业学报, 2019,28(1):70-78. |
[11] | [ Wang Ning, Yuan Meili, Chen Hao, et al. Effects of drought stress and rewatering on growth and physiological characteristics of invasive Aegilops tauschii seedlings[J]. Acta Prataculturae Sinica, 2019,28(1):70-78. ] |
[12] | 郝卫平. 干旱复水对玉米水分利用效率及补偿效应影响研究[D]. 北京: 中国农业科学院, 2013. |
[12] | [ Hao Weiping. Influence of Water Stress and Rewatering on Maize WUE and Compensation Effects[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. ] |
[13] | 种培芳, 苏世平, 李毅, 等. 不同地理种源红砂幼苗对PEG胁迫的生理响应[J]. 草业学报, 2013,22(1):183-192. |
[13] | [ Chong Peifang, Su Shiping, Li Yi, et al. Physiological responses to PEG stress of Reaumuria soongorica seedlings from different geographical origins[J]. Acta Prataculturae Sinica, 2013,22(1):183-192. ] |
[14] | 周健华, 王迎春, 石松利. 长叶红砂主要水分参数随季节和生境的变化[J]. 应用生态学报, 2009,20(11):2624-2631. |
[14] | [ Zhou Jianhua, Wang Yingchun, Shi Songli. Seasonal changes of main water parameters of Reaumuria trigyna in different habitats[J]. Chinese Journal of Applied Ecology, 2009,20(11):2624-2631. ] |
[15] | 王维睿, 苏世平, 李毅, 等. 6个地理种群红砂(Reaumuria soongorica)叶片生态解剖特征及抗旱性评价[J]. 中国沙漠, 2015,35(4):895-900. |
[15] | [ Wang Weirui, Su Shiping, Li Yi, et al. Comparison in leaf eco-anatomical characteristics and drought resistance of six Reaumuria soongocica populations[J]. Journal of Desert Research, 2015,35(4):895-900. ] |
[16] | 左利萍. 水分梯度下不同地理种群红砂耐旱性研究[D]. 兰州: 甘肃农业大学, 2008. |
[16] | [ Zuo Liping. Drought Resistance of Reaumuria soongocica of Different Geographical Populations under Water Gradient[D]. Lanzhou: Gansu Agricultural University, 2008. ] |
[17] | 种培芳, 詹瑾, 贾向阳, 等. 模拟CO2浓度升高及降雨变化对荒漠灌木红砂光合及生长的影响[J]. 农业科学, 2018,54(9):27-37. |
[17] | [ Chong Peifang, Zhan Jin, Jia Xiangyang, et al. Influences of elevated CO2 and precipitation regimes on photosynjournal and growth of desert shrub Reaumuria soongarica[J]. Scientia Silvae Sinicae, 2018,54(9):27-37. ] |
[18] | 白亚梅, 李毅, 单立山, 等. 降水变化和氮添加对红砂幼苗根系形态特征的影响[J]. 干旱区研究, 2020,37(5):1284-1292. |
[18] | [ Bai Yamei, Li Yi, Shan Lishan, et al. Effects of precipitation change and nitrogen addition on root morphological characteristics of Reaumuria soongorica[J]. Arid Zone Research, 2020,37(5):1284-1292. ] |
[19] | 马茂华, 孔令韶. 新疆呼图壁绿洲边缘的琵琶柴生物生态学特性研究[J]. 植物生态学报, 1998,22(3):237-244. |
[19] | [ Ma Maohua, Kong Lingshao. The Bio-ecological characteristics of Reaumuria soongorica on the border of oasis at hutubi Xinjiang[J] Acta Phytoecologica Sinica, 1998,22(3):237-244. ] |
[20] | 种培芳, 李毅, 苏世平, 等. 红砂3个地理种群的光合特性及其影响因素[J]. 生态学报, 2010,30(4):914-922. |
[20] | [ Chong Peifang, Li Yi, Su Shiping, et al. Photosynthetic characteristics and their effect factors of Reaumuria soongorica on three geographical populations[J]. Acta Ecologica Sinica, 2010,30(4):914-922. ] |
[21] | 周生荟, 刘玉冰, 谭会娟, 等. 荒漠植物红砂在持续干旱胁迫下的光保护机制研究[J]. 中国沙漠, 2010,30(1):69-73. |
[21] | [ Zhou Shenghui, Liu Yubing, Tan Huijuan, et al. The photoprotective mechanism of desert plant Reaumuria soogorica under progressive soil drying[J]. Journal of Desert Research, 2010,30(1):69-73. ] |
[22] | 刘玉冰. 荒漠复苏植物红砂抗旱机理的生理生态学特性研究[D]. 兰州: 兰州大学, 2006. |
[22] | [ Liu Yubing. Studies on Ecophysiological Characteristics of Desiccation-tolerant Mechanism in Desert Resurrection Plant Reaumuria soongorica[D]. Lanzhou: Lanzhou University, 2006. ] |
[23] | 黄培祐, 聂湘萍, 周建民, 等. 准噶尔盆地中部琵琶柴(Reaumuria soongorica)群落的生境研究[J]. 新疆大学学报(自然科学版), 1988,14(3):66-71. |
[23] | [ Huang Peiyou, Nie Xiangping, Zhou Jianmin, et al. Habitat study of Reaumuria soongorica community in central Junggar Basin[J]. Journal of Xinjiang University(Natural Science Edition), 1988,14(3):66-71. ] |
[24] | 姬慧娟, 贾会霞, 章小铃, 等. 干旱胁迫对红皮柳光合特性日变化及生长的影响[J]. 南京林业大学学报(自然科学版), 2016,40(6):41-46. |
[24] | [ Ji Huijuan, Jia Huixia, Zhang Xiaoling, et al.[ Effect of drought stress on photosynthetic diurnal course and growth of Salix purpurea[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2016,40(6):41-46. ] |
[25] | 葛晋纲. 高羊茅和钝叶草对干旱胁迫的适应性及生理响应[D]. 南京: 南京农业大学, 2004. |
[25] | [ Ge Jingang. Adaptability and Physiological Response of Tall Fescue and Blunt Leaf Grass to Drought Stress[D]. Nanjing: Nanjing Agricultural University, 2004. ] |
[26] | 潘玉梅, 唐赛春, 韦春强, 等. 不同光照和水分下三叶鬼针草与本地种金盏银盘生长特征的比较研究[J]. 热带亚热带植物学报, 2012,20(5):489-496. |
[26] | [ Pan Yumei, Tang Saichun, Wei Chunqiang, et al. Comparison of growth traits between invasive species Bidens pilosa and its indigenous congener B. biternata under different light and water conditions[J]. Journal of Tropical and Subtropical Botany, 2012,20(5):489-496. ] |
[27] | Claridge K, Franklin S B. Compensation and plasticity in an invasive plant species[J]. Biological Invasions, 2002,4(4):339-347. |
[28] | 蔡丽艳. 植物形态结构与抗旱性[J]. 内蒙古林业调查设计, 2016,39(6):115-116, 99. |
[28] | [ Cai Liyan. Plant morphological structure and drought resistance[J]. Inner Mongolia Forestry Investigation and Design, 2016,39(6):115-116, 99. ] |
[29] | 单立山, 李毅, 石万里, 等. 土壤水分胁迫对红砂幼苗生长和渗透调节物质的影响[J]. 水土保持通报, 2015,35(6):106-109. |
[29] | [ Shan Lishan, Li Yi, Shi Wanli, et al. Effects of dehydration stress on growth of Reaumuria soongorica seedlings and regulation of osmotic substances[J]. Bulletin of Soil and Water Conservation, 2015,35(6):106-109. ] |
[30] | 刘长利, 王文全, 崔俊茹, 等. 干旱胁迫对甘草光合特性与生物量分配的影响[J]. 中国沙漠, 2006,26(1):142-145. |
[30] | [ Liu Changli, Wang Wenquan, Cui Junru, et al. Effects of drought stress on photosynjournal characteristics and biomass allocation of glycyrrhiza uralensis[J]. Journal of Desert Research, 2006,26(1):142-145. ] |
[31] | 何维明. 水分因素对沙地柏实生苗水分和生长特征的影响[J]. 植物生态学报, 2001,47(1):11-16. |
[31] | [ He Weiming. Effects of water factor on hydraulic and growth characteristics of Sabian vulgaris seedlings[J]. Chinese Journal of Plant Ecology, 2001,47(1):11-16. ] |
[32] | 尉秋实, 赵明, 李昌龙, 等. 不同土壤水分胁迫下沙漠葳的生长及生物量的分配特征[J]. 生态学杂志, 2006,25(1):7-12. |
[32] | [ Wei Qiushi, Zhao Ming, Li Changlong, et al. The growth and biomass distribution characteristics of desert flourish under different soil water stress[J]. Chinese Journal of Ecology, 2006,25(1):7-12. ] |
[33] | 丁红, 张智猛, 戴良香, 等. 干旱胁迫对花生根系生长发育和生理特性的影响[J]. 应用生态学报, 2013,24(6):1586-1592. |
[33] | [ Ding Hong, Zhang Zhimeng, Dai Liangxiang, et al. Effects of drought stress on the root growth and development and physiological characteristics of peanut[J]. Chinese Journal of Applied Ecology, 2013,24(6):1586-1592. ] |
[34] | Lynch J. Root architecture and plant productivity[J]. Plant physiology, 1995,109(1):7-13. |
[35] | 黎燕琼, 郑绍伟, 陈泓, 等. 林木抗旱性研究及其进展[J]. 世界林业研究, 2007,20(1):10-15. |
[35] | [ Li Yanqiong, Zheng Shaowei, Chen Hong, et al. Review and progress of drought-resistence of tree species[J]. World Forestry Research, 2007,20(1):10-15. ] |
[36] | 季孔庶, 孙志勇, 方彦. 林木抗旱性研究进展[J]. 南京林业大学学报(自然科学版), 2006,49(6):123-128. |
[36] | [ Ji Kongshu, Sun Zhiyong, Fang Yan. Research advance on the drought resistant in forest[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2006,49(6):123-128. ] |
[37] | 陈雅君, 冯淑华, 陈桂芬. 植物抗旱性鉴定指标的研究现状与进展[J]. 中国林副特产, 2005,20(6):62-63. |
[37] | [ Chen Yajun, Feng Shuhua, Chen Guifen. Research status and progress of plant drought resistance identification indicators[J]. Forest By-Product and Speciality in China, 2005,20(6):62-63. ] |
[38] | 程媛媛, 苏孝良. 植物抗旱机制研究进展[J]. 贵州师范大学学报(自然科学版), 2014,32(1):113-120. |
[38] | [ Cheng Yuanyuan, Su Xiaoliang. Research progress on plant drought resistance mechanism[J]. Journal of Guizhou Normal University(Natural Sciences), 2014,32(1):113-120. ] |
[39] | 陈红, 冯云, 周建梅, 等. 植物根系生物学研究进展[J]. 世界林业研究, 2013,26(5):25-29. |
[39] | [ Chen Hong, Feng Yun, Zhou Jianmei, et al. Research advance of plant root biology[J]. World Forestry Research, 2013,26(5):25-29. ] |
[40] | 段桂芳, 单立山, 李毅, 等. 降水格局变化对红砂幼苗生长的影响[J]. 生态学报, 2016,36(20):6457-6464. |
[40] | [ Duan Guifang, Shan Lishan, Li Yi, et al. Effects of changing precipitation patterns on seedling growth of Reaumuria soongorica[J] Acta Ecologica Sinica, 2016,36(20):6457-6464. ] |
[41] | Pallardy S G, Rhoads J L. Morphological adaptations to drought in seedling of deciduous angiosperms[J]. Canadian Journal of Forest Research, 1993,23(9):1766-1774. |
[42] | 单立山, 李毅, 段雅楠, 等. 红砂幼苗根系形态特征和水分利用效率对土壤水分变化的响应[J]. 西北植物学报, 2014,34(6):1198-1205. |
[42] | [ Shan Lishan, Li Yi, Duan Yanan, et al. Response of root morphology and water use efficiency of Reaumuria soongorica to soil water change[J]. Acta Botanica Boreali-Occidentalia Sinica, 2014,34(6):1198-1205. ] |
[43] | Pregitzer K S, Laskowski M J, Burton A J, et al. Variation in sugar maple root respiration with root diameter and soil depth[J]. Tree Physiology, 1998,18(10):665-670. |
[44] | 魏清江, 冯芳芳, 马张正, 等. 干旱复水对柑橘幼苗叶片光合、叶绿素荧光和根系构型的影响[J]. 应用生态学报, 2018,29(8):2485-2492. |
[44] | [ Wei Qingjiang, Feng Fangfang, Ma Zhangzheng, et al. Effects of drought and rewatering on leaf photosynjournal, chlorophyll fluorescence, and root architecture of citrus seedlings[J]. Chinese Journal of Applied Ecology, 2018,29(8):2485-2492. ] |
[45] | 王世琪, 刘金彪, 康继月, 等. 水分和磷处理对建植当年柳枝稷根系生长和形态特征的影响[J]. 草业科学, 2019,36(8):2096-2104. |
[45] | [ Wang Shiqi, Liu Jinbiao, Kang Jiyue, et al. Effects of water and phosphorus on root growth and morphological characteristics of switchgrass in the establishment year[J]. Pratacultural Science, 2019,36(8):2096-2104. ] |
[46] | 徐当会. 红砂和柠条脱水复水过程中的生理生态特性研究[D]. 兰州: 兰州大学, 2007. |
[46] | [ Xu Danghui. Study on Ecophysiological Characteristics of Reaumuria soongorica and Caraguna korshinskii During Dehydration and Rehydration[D]. Lanzhou: Lanzhou University, 2007. ] |
/
〈 | 〉 |