植物与植物生理

黑河中游湿地胡杨蒸腾速率与叶性状的关联性分析

展开
  • 西北师范大学地理与环境科学学院,甘肃省湿地资源保护与产业发展工程研究中心,甘肃 兰州 730070
文军(1982-),男,博士研究生,主要从事湿地生态学、生物地理学研究. E-mail:wenjun198211@163.com

收稿日期: 2020-06-29

  修回日期: 2020-10-17

  网络出版日期: 2021-04-25

基金资助

国家自然科学基金资助(41861009);国家自然科学基金资助(41461013)

Studies of correlation between the transpiration rate and leaf traits of Populus euphratica in the middle reaches of the Heihe River wetland

Expand
  • College of Geography and Environmental Science, Northwest Normal University, Research Center of Wetland Resources Protection and Industrial Development Engineering of Gansu Province, Lanzhou 730070, Gansu, China

Received date: 2020-06-29

  Revised date: 2020-10-17

  Online published: 2021-04-25

摘要

干旱区湿地植物叶片蒸腾作用与叶性状的关联性研究,对揭示植物叶片叶脉网络性状、叶片形态构建模式与植物体内水分平衡间的内在联系至关重要。以黑河中游湿地胡杨(Populus euphratica)为研究对象,按胡杨林距离水域的远近分别设置:I (离水域30~110 m, 土壤含水量(SMC) 58.23%)、II (离水域160~240 m, SMC 40.53%)、III (离水域290~370 m, SMC 28.36%)3个样地,研究了不同土壤含水量条件下胡杨叶片蒸腾速率(Tr)与叶性状之间的关联性。结果表明:(1) 随着土壤含水量的逐渐减小,胡杨林的高度、胸径和郁闭度均逐渐降低,光合有效辐射(PAR)显著增加;(2) 胡杨叶片的叶脉密度、叶厚度、净光合速率(Pn)、Tr、气孔导度(Gs)和胞间CO2浓度(Ci)逐渐增加,而叶脉直径、叶面积和比叶面积逐渐减小;(3) 3个样地胡杨Tr与叶脉密度均呈极显著的正相关关系(P<0.01),与叶面积和比叶面积呈极显著负相关关系(P<0.01);(4) 在样地I和样地III,胡杨Tr与叶脉直径呈极显著的负相关关系(P<0.01),在样地II二者呈显著负相关关系(P<0.05)。为适应土壤水分的梯度性变化,胡杨种群通过优化叶性状的资源投入以调控叶片蒸腾耗水,实现对土壤水分的有效利用和光合碳同化产物的合理分配,体现了干旱区内陆河湿地植物对特殊生境的生态适应机制。

本文引用格式

文军,赵成章,李群,赵连春 . 黑河中游湿地胡杨蒸腾速率与叶性状的关联性分析[J]. 干旱区研究, 2021 , 38(2) : 429 -437 . DOI: 10.13866/j.azr.2021.02.14

Abstract

Study of the correlation between transpiration and vein characters in wetland plants in arid regions is of great importance in understanding the internal relationship between vein network characters, leaf morphology, and water balance in plants. Our aim was to examine the correlation between the transpiration rate and the leaf traits of Populus euphratica at different levels of soil moisture content (SMC). Our study area was in the middle reaches of the Heihe River wetland, Gansu Province, China (98°25′56.98″E, 39°54′10.55″). We divided the sample area into three levels based on the distance from water: Plot I (30-110 m from water, SMC 58.23%), plot II (160-240 m away from water, SMC 40.53%), and plot III (290-370 m from water, SMC 28.36%). The findings revealed that as the SMC decreased, the crown density, diameter at breast height, plant height, vein diameter, leaf area, and specific leaf area of P. euphratica decreased gradually, whereas the opposite was the case for leaf thickness, vein density, PAR, Pn, Tr, Gs, and Ci. There was a highly significant positive correlation between Tr and vein density at three plots (P<0.01), and the opposite correlation was seen between leaf area and specific leaf area. There was a highly significant negative correlation between Tr and vein diameter in plots I and III (P<0.01), whereas there was a significantly negative correlation between Tr and vein diameter in plot II (P<0.05). To adapt to the gradient change of soil water, P. euphratica populations regulated the water consumption due to leaf transpiration by optimizing the resource input of leaf vein characters to realize effective utilization of soil water and reasonable distribution of photosynthetic carbon assimilation products; this reflected the ecological adaptation mechanism of inland river wetland plants in arid areas to special habitats.

参考文献

[1] Wright I J, Westoby M. Leaves at low versus high rainfall: Coordination of structure, lifespan and physiology[J]. New Phytologist, 2002,155(3):403-416.
[2] Scoffoni C, Rawls M, McKown A, et al. Decline of leaf hydraulic conductance with dehydration: Relationship to leaf size and venation architecture[J]. Plant Physiology, 2011,156(2):832-843.
[3] Sack L, Scoffoni C. Leaf venation: Structure, function, development, evolution, ecology and applications in the past, present and future[J]. New Phytologist, 2013,198(4):983-1000.
[4] 于贵瑞, 王秋凤. 植物光合、蒸腾与水分利用的生理生态学[M]. 北京: 科学出版社, 2010.
[4] [ Yu Guirui, Wang Qiufeng. Ecophysiology of Plant Photosynthesis, Transpiration, and Water Use[M]. Beijing: Science Press, 2010. ]
[5] Nardini A, Raimondo F, LoGullo M A. Leaf miners help us understand leaf hydraulic design[J]. Plant, Cell and Environment, 2010,33(7):1091-1100.
[6] Matthew-Ogburn R, Edwards E J. Repeated origin of three-dimensional leaf venation releases constraints on the evolution of succulence in plants[J]. Current Biology, 2013,23(8):722-726.
[7] Pagano M, Storchi P. Leaf vein density: A possible role as cooling system[J]. Journal of Life Sciences, 2015,7:299-303.
[8] 宋丽清, 胡春梅, 侯喜林, 等. 高粱、紫苏叶脉密度与光合特性的关系[J]. 植物学报, 2015,50(1):100-106.
[8] [ Song Liqing, Hu Chunmei, Hou Xilin, et al. Relationship between photosynthetic characteristics and leaf vein density in Sorghum bicolor and Perilla frutescens[J]. Chinese Bulletin of Botany, 2015,50(1):100-106. ]
[9] Sheffield J, Wood E F, Roderick M L. Little change in global drought over the past 60 years[J]. Nature, 2012,491(7424):435-440.
[10] 李永华, 李臻, 辛智鸣, 等. 形态变化对叶片表面温度的影响[J]. 植物生态学报, 2018,42(2):202-208.
[10] [ Li Yonghua, Li Zhen, Xin Zhiming, et al. Effects of leaf shape plasticity on leaf surface temperature[J]. Chinese Journal of Plant Ecology, 2018,42(2):202-208. ]
[11] 韩玲, 赵成章, 冯威, 等. 张掖湿地芨芨草叶脉密度和叶脉直径的权衡关系对3种生境的响应[J]. 植物生态学报, 2017,41(8):872-881.
[11] [ Han Ling, Zhao Chengzhang, Feng Wei, et al. Trade-off relationship between vein density and vein diameter of Achnatherum splendensin response to habitat changes in Zhangye wetland[J]. Chinese Journal of Plant Ecology, 2017,41(8):872-881. ]
[12] 任悦, 赵成章, 李雪萍, 等. 秦王川湿地滨藜叶脉性状与蒸腾速率关系对种群密度的响应[J]. 生态学报, 2018,38(16):5819-5827.
[12] [ Ren Yue, Zhao Chengzhang, Li Xueping, et al. The response of the relationship between transpiration rate and leaf traits of Atriplex patens to population density in the national wetland park conservation areas in Qinwangchuan[J]. Acta Ecologica Sinica, 2018,38(16):5819-5827. ]
[13] Chen S L, Polle A. Salinity tolerance of Populus[J]. Plant Biology, 2010,12(2):317-333.
[14] 杨丽雯, 何秉宇, 黄培祐, 等. 和田河流域天然胡杨林的生态服务价值评估[J]. 生态学报, 2006,26(3):681-689.
[14] [ Yang Liwen, He Bingyu, Huang Peiyou, et al. Assessment of ecological service values for native Populus euphratica forest in Khotan watershed[J]. Acta Ecologica Sinica, 2006,26(3):681-689. ]
[15] Niinemets ü, Portsmuth A, Tobias M. Leaf shape and venation pattern alter the support investments within leaf lamina in temperate species: A neglected source of leaf physiological differentiation?[J]. Functional Ecology, 2007,21(1) 28-40.
[16] Blonder B, Violle C, Bentley L P, et al. Venation networks and the origin of the leaf economics spectrum[J]. Ecology Letters, 2010,14(2):91-100.
[17] Reich P B. The world-wide “fast-slow” plant economics spectrum: a traits manifesto[J]. Journal of Ecology, 2014,102(2):275-301.
[18] 段贝贝, 赵成章, 徐婷, 等. 兰州北山不同坡向刺槐叶脉密度与气孔性状的关联性分析[J]. 植物生态学报, 2016,40(12):1289-1297.
[18] [ Duan Beibei, Zhao Chengzhang, Xu Ting, et al. Correlation analysis between vein density and stomatal traits of Robinia pseudoacacia in different aspects of Beishan Mountain in Lanzhou[J]. Chinese Journal of Plant Ecology, 2016,40(12):1289-1297. ]
[19] 徐婷, 赵成章, 韩玲, 等. 张掖湿地旱柳叶脉密度与水分利用效率的关系[J]. 植物生态学报, 2017,41(7):761-769.
[19] [ Xu Ting, Zhao Chengzhang, Han Ling, et al. Correlation between vein density and water use efficiency of Salix matsudana in Zhangye Wetland[J]. Chinese Journal of Plant Ecology, 2017,41(7):761-769. ]
[20] 陈静, 庄立会, 沐建华, 等. 云南文山石漠化区车桑子叶脉密度与叶氮含量关系对生境的响应[J]. 生态学报, 2020,40(11):1-9.
[20] [ Chen Jing, Zhuang Lihui, Mu Jianhua, et al. Relationship between vein density and leaf nitrogen concentration of Dodonaea viscosa in response to habitat changes in rocky desertification area, Wenshan Yun nan[J]. Acta Ecologica Sinica, 2020,40(11):1-9. ]
[21] 黄文娟, 李志军, 杨赵平, 等. 胡杨异形叶结构型性状及其与胸径关系[J]. 生态学杂志, 2010,29(12):2347-2352.
[21] [ Huang Wenjuan, Li Zhijun, Yang Zhaoping, et al. Heteromorphic leaf structural characteristics and their correlations with diameter at breast height of Populus euphratica[J]. Chinese Journal of Ecology, 2010,29(12):2347-2352. ]
[22] 刘帅飞, 焦培培, 李志军. 灰叶胡杨异形叶的类型及其时空特征[J]. 干旱区研究, 2016,33(5):1098-1103.
[22] [ Liu Shuaifei, Jiao Peipei, Li Zhijun. Diversifolious types and spatiotemporal characteristics of Populus euphratica Schrenk[J]. Arid Zone Research, 2016,33(5):1098-1103. ]
[23] 王海珍, 韩路, 徐雅丽, 等. 胡杨异形叶光合作用对光强与CO2浓度的响应[J]. 植物生态学报, 2014,38(10):1099-1109.
[23] [ Wang Haizhen, Han Lu, Xu Yali, et al. Photosynthetic responses of the heteromorphic leaves in Populus euphratica to light intensity and CO2 concentration[J]. Chinese Journal of Plant Ecology, 2014,38(10):1099-1109. ]
[24] 李菊艳, 赵成义, 闫映宇, 等. 不同盐分梯度下胡杨幼苗的光合—光响应特征[J]. 干旱区研究, 2014,31(4):728-733.
[24] [ Li Juyan, Zhao Chengyi, Yan Yingyu, et al. Response of Populus euphratica seedlings to photosynjournal light under salt stress[J]. Arid Zone Research, 2014,31(4):728-733. ]
[25] 马玉祥, 张永利, 李玉灵, 等. 不同时间尺度环境因子对黑河下游胡杨(Populus euphratica)径向生长的影响[J]. 干旱区研究, 2019,36(6):1502-1511.
[25] [ Ma Yuxiang, Zhang Yongli, Li Yuling, et al. Effects of environmental factors on radial growth of Populus euphratica at different time scales in the lower reaches of the Heihe River[J]. Arid Zone Research, 2019,36(6):1502-1511. ]
[26] 夏振华, 陈亚宁, 朱成刚, 等. 干旱胁迫环境下的胡杨叶片气孔变化[J]. 干旱区研究, 2018,35(5):1111-1117.
[26] [ Xia Zhenhua, Chen Yaning, Zhu Chenggang, et al. Stomatal change in leaves of Population euphratica under drought stress[J]. Arid Zone Research, 2018,35(5):1111-1117. ]
[27] Sack L, Scoffoni C, John G P, et al. How do leaf veins influence the worldwide leaf economic spectrum? Review and synjournal[J]. Journal of Experimental Botany, 2013,64(13):4053-4080.
[28] 李群, 赵成章, 王继伟, 等. 甘肃小苏干湖盐沼湿地盐地风毛菊叶形态-光合生理特征对淹水的响应[J]. 植物生态学报, 2019,43(8):685-696.
[28] [ Li Qun, Zhao Chengzhang, Wang Jiwei, et al. Morphological and photosynthetic physiological characteristics of Saussurea salsa in response to flooding in salt marshes of Xiao Sugan Lake, Gansu, China[J]. Chinese Journal of Plant Ecology, 2019,43(8):685-696. ]
[29] Falster D S, Warton D I, Wright I J. User’s Guide to SMATR: Standardised Major Axis Tests & Routines Version 2. 0. http://www.bio.mq.edu.au/ecology/SMATR/.2012.
[30] Warton D I, Wright I J, Falster D S, et al. Bivariate line-fitting methods for allometry[J]. Biological Reviews, 2006,81(2):259-291.
[31] Pitman E J G. A note on normal correlation[J]. Biometrika, 1939,31(1-2):9-12.
[32] Warton D I, Weber N C. Common slope tests for bivariate errors-in-variables models[J]. Biometrical Journal, 2002,44(2):161-174.
[33] 张泉, 刘咏梅, 杨勤科, 等. 祁连山退化高寒草甸土壤水分空间变异特征分析[J]. 冰川冻土, 2014,36(1):88-94.
[33] [ Zhang Quan, Liu Yongmei, Yang Qinke, et al. Analysis of spatial variability of soil moisture in degrading alpine meadow in the Qilian Mountain[J]. Journal of Glaciology and Geocryology, 2014,36(1):88-94. ]
[34] Chapin F S, Matson P A, Mooney H A. Principles of Terrestrial Ecosystem Ecology[M]. Li B, Zhao B, Peng R H. Translate. Beijing: Higher Education Press, 2005: 83-127.
[35] 龚容, 徐霞, 江红蕾, 等. 干旱半干旱区几种典型灌木半灌木茎叶水分传导系统的结构特征[J]. 北京师范大学学报(自然科学版), 2018,54(4):534-542.
[35] [ Gong Rong, Xu Xia, Jiang Honglei, et al. Architectural traits of stem-leaf hydraulic system in typical shrubs in arid and semi-arid regions[J]. Journal of Beijing Normal University (Natural Science Edition), 2018,54(4):534-542. ]
[36] 金鹰, 王传宽. 植物叶片水力与经济性状权衡关系的研究进展[J]. 植物生态学报, 2015,39(10):1021-1032.
[36] [ Jin Yin, Wang Chuankuan. Trade-offs between plant leaf hydraulic and economic traits[J]. Chinese Journal of Plant Ecology, 2015,39(10):1021-1032. ]
[37] Ellsworth D S, Reich P B. Canopy structure and vertical patterns of photosynjournal and related leaf traits in a deciduous forest[J]. Oecologia, 1993,96(2):169-178.
[38] 张海昕, 李珊, 张硕新, 等. 4个杨树无性系木质部导管结构与栓塞脆弱性的关系[J]. 林业科学, 2013,49(5):54-61.
[38] [ Zhang Haixin, Li Shan, Zhang Shuoxin, et al. Relationships between xylem vessel structure and embolism vulnerability in four Populus clones[J]. Scientia Silvae Sinicae, 2013,49(5):54-61. ]
[39] Johnson D M, Meinzer F C, Woodruff D R, et al. Leaf xylem embolism, detected acoustically and by cryo-SEM, corresponds to decreases in leaf hydraulic conductance in four evergreen species[J]. Plant, Cell& Environment, 2009,32(2):828-836.
[40] Nobel P S. Physicochemical and Environmental Plant Physiology[M]. San Diego, USA: Academic Press: 2005.
[41] Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004,428(6985):821-827.
[42] Poorter L, Bongers L, Bongers F. Architecture of 54 moist-forest tree species: Traits, trade-offs, and functional groups[J]. Ecology, 2006,87(5):1289-1301.
[43] Funk J L, Vitousek P M. Resource-use efficiency and plant invasion in low-resource systems[J]. Nature, 2007,446(7139):1079-1081.
[44] 张翼飞, 王炜, 梁存柱, 等. 内蒙古典型草原区芨芨草群落适生生境[J]. 生态学报, 2012,32(4):1193-1201.
[44] [ Zhang Yifei, Wang Wei, Liang Cunzhu, et al. Suitable habitat for the Achnatherum splendens community in typical steppe region of Inner Mongolia[J]. Acta Ecologica Sinica, 2012,32(4):1193-1201. ]
文章导航

/