土壤资源

黄河源区高寒草地不同深度土壤理化性质与抗剪强度关系研究

展开
  • 1.青海大学地质工程系,青海 西宁 810016
    2.青海大学农牧学院,青海 西宁 810016
申紫雁(1996-),女,硕士研究生,主要研究方向为地质工程与环境地质. E-mail:924900312@qq.com

收稿日期: 2020-06-16

  修回日期: 2020-07-21

  网络出版日期: 2021-04-25

基金资助

青海省自然科学基金项目(2020-ZJ-906);青海省自然科学基金项目(2018-ZJ-781);国家自然科学基金项目(41572306);第二次青藏高原综合科学考察研究项目(2019QZKK0905-14);高等学校学科创新引智计划(D18013);教育部长江学者和创新团队发展计划项目(IRT_17R62)

Relationships between the physical and chemical properties of soil and the shear strength of root-soil composite systems at different soil depths in alpine grassland in the source region of the Yellow River

Expand
  • 1. Department of Geological Engineering, Qinghai University, Xining 810016, Qinghai, China
    2. College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, Qinghai, China

Received date: 2020-06-16

  Revised date: 2020-07-21

  Online published: 2021-04-25

摘要

以黄河源区的高寒草地为研究对象,探讨了草地和裸地在0~10 cm、10~20 cm、20~30 cm、30~40 cm和40~50 cm 5种不同深度土壤理化性质和根-土复合体抗剪强度特征。研究结果表明:黄河源区的土壤为弱碱性土,且pH值、密度随着土壤深度增加而增大。土壤含水率、有机质随土壤深度的增加表现出减小的变化趋势。与此同时,草地土体粘聚力c值随深度增加而降低,而裸地则表现出随土壤深度的增加而增大的变化特征。由灰色关联法分析结果表明:草地根-土复合体粘聚力c值与速效磷、含根量和有机质的关联度相对较高,分别为0.82、0.82、0.76,裸地土体粘聚力c值则与密度、pH值和土壤颗粒控制粒径d60参数值的关联度相对较高,即分别为0.76、0.74、0.73。研究结果对科学有效防治高寒区因草地退化引起的水土流失、浅层滑坡等灾害现象的发生,具有理论研究价值和现实意义。

本文引用格式

申紫雁,刘昌义,胡夏嵩,周林虎,许桐,李希来,李国荣 . 黄河源区高寒草地不同深度土壤理化性质与抗剪强度关系研究[J]. 干旱区研究, 2021 , 38(2) : 392 -401 . DOI: 10.13866/j.azr.2021.02.10

Abstract

The relationships between the physical and chemical properties of soil, the shear strength of the root-soil composite system, and the soil depth were investigated in the alpine grassland in Henan Country, Qinghai Province, in the source region of the Yellow River. Direct shear tests of root-soil composite systems and soil physical and chemical content tests were conducted. Five different soil depths (0-10 cm, 10-20 cm, 20-30 cm, 30-40 cm, and 40-50 cm) were selected for sampling. The results showed that the soil moisture content decreased gradually with increasing soil depth. The soil was weakly alkaline, and the soil pH increased. The content of organic matter and nutrient elements in the soil decreased with increasing soil depth. Additionally, the cohesion c value of the soil in the non-degraded grassland gradually decreased with increasing soil depth. For the degraded bare land, the cohesion c value of the soil gradually increased with increasing soil depth. According to the analysis of the gray relational method, the shear strength of the root-soil composite systems was closely related to available P (0.82), root content (0.82), and organic matter (0.76). Additionally, the shear strength was correlated with density of bare soil (0.76) and soil particle size d60 (0.74). The results of this study can be used to inform the effective prevention and control of soil erosion, shallow landslide, and other disasters caused by grassland degradation in extremely cold areas.

参考文献

[1] 李双, 徐新良, 付颖. 基于高光谱影像的三江源区不同退化程度高寒草甸分类研究[J]. 遥感技术与应用, 2015,30(1):50-57.
[1] [ Li Shuang, Xu Xinliang, Fu Ying. A study on classification of different degradation level alpine meadows based on hyperspectral image data in Three-river Headwater Region[J]. Remote Sensing Technology and Application, 2015,30(1):50-57. ]
[2] 安如, 陆彩红, 王慧麟, 等. 三江源典型区草地退化Hyperion高光谱遥感识别研究[J]. 武汉大学学报(信息科学版), 2018,43(3):399-405.
[2] [ An Ru, Lu Caihong, Wang Huilin, et al. Remote sensing identification of rangeland degradation using hyperion hyperspectral image in a typical area for Three-River Headwater Region, Qinghai, China[J]. Geomatics and Information Science of Wuhan University, 2018,43(3):399-405. ]
[3] Yan Y, Tian L, Du Z, et al. Carbon, nitrogen and phosphorus stocks differ among vegetation patch types in a degraded alpine steppe[J]. Soils and Sediments, 2019,19(4):1809-1819.
[4] Ma L, Yao Z, Zheng X, et al. Increasing grassland degradation stimulates the non-growing season CO2 emissions from an alpine meadow on the Qinghai-Tibetan Plateau[J]. Environmental Science and Pollution Research, 2018,25(26):26576-26591.
[5] 赵新全, 周华坤. 三江源区生态环境退化、恢复治理及其可持续发展[J]. 中国科学院院刊, 2005,20(6):471-476.
[5] [ Zhao Xinquan, Zhou Huakun. Eco-environmental degradation, vegetation regeneration and sustainable development in headwaters of Three Rivers on Tibetan plateau[J]. Bulletin of Chinese Academy of Sciences, 2005,20(6):471-476. ]
[6] 李旭谦. 青海省退化草地治理与恢复的技术措施[J]. 青海科技, 2018,25(6):34-39.
[6] [ Li Xuqian. Technical measures for the management and restoration of degraded grassland in Qinghai Province[J]. Qinghai Science and Technology, 2018,25(6):34-39. ]
[7] 刘启兴, 董国涛, 景海涛, 等. 2000-2016年黄河源区植被NDVI变化趋势及影响因素[J]. 水土保持研究, 2019,26(3):86-92.
[7] [ Liu Qixing, Dong Guotao, Jing Haitao, et al. Change trend of vegetation NDVI and its influencing factors in the Source Region of the Yellow River in the period from 2000 to 2016[J]. Research of Soil and Water Conservation, 2019,26(3):86-92. ]
[8] Kharisum, Fasillah, Mujiono, et al. Composition of planting media and biological agents to improve physical and chemical properties of soil[J]. IOP Conference Series Earth and Environmental Science, 2019,250(1):1-6.
[9] 鲍根生, 王玉琴, 宋梅玲, 等. 狼毒斑块对狼毒型退化草地植被和土壤理化性质影响的研究[J]. 草业学报, 2019,28(3):51-61.
[9] [ Bao Gensheng, Wang Yuqin, Song Meiling, et al. Effects of Stellera chamaejasme patches on the surrounding grassland community and on soil physical-chemical properties in degraded grasslands susceptible to S. chamaejasme invasion[J]. Acta Prataculturae Sinica, 2019,28(3):51-61. ]
[10] 姜哲浩, 周泽, 陈建忠, 等. 三江源区不同海拔高寒草原土壤养分及化学计量特征[J]. 草地学报, 2019,27(4):1029-1036.
[10] [ Jiang Zhehao, Zhou Ze, Chen Jianzhong, et al. Soil nutrient and stoichiometry of alpine steppe under different altitudes in the three-river headwaters region[J]. Acta Agrestia Sinica, 2019,27(4):1029-1036. ]
[11] 马俊梅, 郭春秀, 肖斌, 等. 民勤黑果枸杞形态学特征与土壤因子的关系[J]. 干旱区研究, 2020,37(2):444-451.
[11] [ Ma Junmei, Guo Chunxiu, Xiao Bin, et al. Relationship between morphological characteristics of Lycium ruthenicum and soil factors in Minqin, Gansu, Northwest China[J]. Arid Zone Research, 2020,37(2):444-451. ]
[12] Yi X S, Li G S, Yin Y. Pedotransfer functions for estimating soil bulk density: A case study in the Three-River Headwater region of Qinghai Province, China[J]. Pedosphere, 2016,26(3):362-373. ]
[13] Johnston A, Dormaar J F, Smoliaks. Long-term grazing effects on fescue grassland soils[J]. Range Manage, 1971,24(3):185-188.
[14] 杨永胜, 张莉, 未亚西, 等. 退化程度对三江源泽库高寒草甸土壤理化性质及持水能力的影响[J]. 中国草地学报, 2017,39(5):54-61.
[14] [ Yang Yongsheng, Zhang Li, Wei Yaxi, et al. Effects of degradation degree on soil physicochemical properties and soil water-holding capacity in Zeku alpine meadow in the headwater region of Three Rivers in China[J]. Chinese Journal of Grassland, 2017,39(5):54-61. ]
[15] Li C, Hao X, Ellert B H, et al. Changes in soil C, N, and P with long-term (58 years) cattle grazing on rough fescue grassland[J]. Journal of Plant Nutrition & Soil Science, 2012,175(3):339-344.
[16] 姜哲浩, 周泽, 陈建忠, 等. 三江源区不同海拔高寒草原土壤养分及化学计量特征[J]. 草地学报, 2019,27(4):1029-1036.
[16] [ Jiang Zhehao, Zhou Ze, Chen Jianzhong, et al. Soil nutrient and stoichiometry of alpine steppe under different altitudes in the three-river headwaters region[J]. Acta Agrestia Sinica, 2019,27(4):1029-1036. ]
[17] 刘昌义, 胡夏嵩, 窦增宁, 等. 黄河源区高寒草地植被根-土复合体抗剪强度试验及退化程度阈值确定[J]. 草业学报, 2017,26(9):14-26.
[17] [ Liu Changyi, Hu Xiasong, Dou Zengning, et al. Shear strength tests of the root-soil composite system of alpine grassland vegetation at different stages of degradation and the determination of thresholds in the Yellow River source region[J]. Acta Prataculturae Sinica, 2017,26(9):14-26. ]
[18] Mickovski S B, Van L B. Test data from pullout experiments on vetiver grass (Vetiveria zizanioides) grown in semi-arid climate[J]. Data in Brief, 2018,17(7):463-468.
[19] Ghestem M, Veylon G, Bernard A, et al. Influence of plant root system morphology and architectural traits on soil shear resistance[J]. Plant and Soil, 2014,377(1-2):43-61.
[20] 栗岳洲, 付江涛, 胡夏嵩, 等. 土体粒径对盐生植物根-土复合体抗剪强度影响的试验研究[J]. 岩石力学与工程学报, 2016,35(2):403-412.
[20] [ Li Yuezhou, Fu Jiangtao, Hu Xiasong, et al. Experimental study of the influence of grain size on the shear strength of rooted soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2016,35(2):403-412. ]
[21] 贺长彬, 尤泳, 王德成, 等. 退化草地复合体力学特性与影响因素研究[J]. 农业机械学报, 2016,47(4):79-89.
[21] [ He Changbin, You Yong, Wang Decheng, et al. Mechanical characteristics of soil-root composite and its influence factors in degenerated grassland[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016,47(4):79-89. ]
[22] Bo F, Zong Q L, Cai H B, et al. Calculation of increased soil shear strength from desert plant roots[J]. Arabian Journal of Geosciences, 2019,12(16):1-12.
[23] 胡艳欣. 红黏土含水量和干密度与抗剪强度的相关性分析[J]. 人民长江, 2017,48(增刊):255-258.
[23] [ Hu Yanxin. Correlation analysis of moisture content and dry density of red clay with shear strength[J]. Yangtze River, 2017,48(Suppl. ): 255-258. ]
[24] 高露, 张圣微, 赵鸿彬, 等. 退化草原土壤理化性质空间异质性及其对土壤水分的影响[J]. 干旱区研究, 2020,37(3):607-617.
[24] [ Gao Lu, Zhang Shengwei, Zhao Hongbin, et al. Spatial heterogeneity of soil physical and chemical properties in degraded grassland and their effect on soil moisture[J]. Arid Zone Research, 2020,37(3):607-617. ]
[25] 张丽娅, 马志林. 南水北调中线渠坡不同季节不同盖度草地土壤氮素和有机质变化[J]. 江苏农业科学, 2019,47(3):219-223.
[25] [ Zhang Liya, Ma Zhilin. Changes of soil nitrogen and organic matter contents of grassland with different coverage in different coverage in different seasons in middle lineslope of south-to-north water transfer project[J]. Jiangsu Agricultural Science, 2019,47(3):219-223. ]
[26] 靳杭森. 西南红层滑带土物理力学性质与微观结构的相关性研究[D]. 成都: 成都理工大学, 2019.
[26] [ Jin Hangsen. Study on the Correlation between Physical and Mechanical Properties and Microstructures of Red-bed Sliding Zone Soils in Southwest China[D]. Chengdu: Chengdu University of Technology, 2019. ]
[27] 傅华, 陈亚明, 王彦荣, 等. 阿拉善主要草地类型土壤有机碳特征及其影响因素[J]. 生态学报, 2004,24(3):469-476.
[27] [ Fu Hua, Chen Yaming, Wang Yanrong, et al. Organic carbon content in major grassland types in Alex, Inner Mongolia[J]. Acta Ecologica Sinica, 2004,24(3):469-476. ]
[28] 崔楠, 吕光辉, 刘晓星, 等. 胡杨、梭梭群落土壤理化性质及其相互关系[J]. 干旱区研究, 2015,32(3):476-482.
[28] [ Cui Nan, Lyu Guanghui, Liu Xiaoxing, et al. Soil physical-chemical properties of Populus euphratica and Haloxylon persicum communities and their relationship[J]. Arid Zone Research, 2015,32(3):476-482. ]
[29] Tian H, Chen G, Zhang C, et al. Pattern and variation of C: N: P ratios in China’s soils: A synjournal of observational data[J]. Biogeochemistry, 2010,98(1):139-151.
[30] Curtin D, Beare M H, Chantigny M H, et al. Controls on the extractability of soil organic matter in water over the 20 to 80 ℃ temperature range[J]. Soil Science Society of America Journal, 2011,75(4):1423-1430.
文章导航

/