泛第三极环境与绿色丝路

1961—2017年青藏高原东北部雨季降水量变化及其贡献度分析

展开
  • 1.青海省气候中心,青海 西宁 810001
    2.兰州大学大气科学学院,甘肃 兰州 730000
杨昭明(1963-),男,高级工程师,研究方向为高原气象预报及服务. E-mail: 88111686@qq.com

收稿日期: 2020-04-23

  修回日期: 2020-09-14

  网络出版日期: 2021-03-05

基金资助

中国气象局气候变化专项(CCSF202021);国家自然科学基金项目(41861013)

Analysis of precipitation change and its contribution in the rainy season in the northeast Qinghai-Tibet Plateau from 1961 to 2017

Expand
  • 1. Qinghai climate center, Xining 810001, Qinghai, China
    2. College of Atmospheric Science, Lanzhou University, Lanzhou 730000, Gansu, China

Received date: 2020-04-23

  Revised date: 2020-09-14

  Online published: 2021-03-05

摘要

利用53个气象观测站1961—2017年5—9月逐日降水资料,分析了青藏高原东北部雨季降水量的变化特征,以及不同等级降水变化在降水量增量中的相对贡献。结果表明:1961—2017年青藏高原东北部干旱区雨季降水量呈增加趋势,半干旱区和半湿润区降水量的极端性增强。大部分地区的降水强度普遍增加。进一步分析可知,青藏高原东北部雨季降水量变化主要由降水强度的变化引起,同时中雨等级降水增加贡献大于其他等级降水。半湿润区和半干旱区东部降水极端化趋势明显增强。该结果有助于进一步理解和认识青藏高原东北部生态环境变化的气候效应。

本文引用格式

杨昭明,张调风 . 1961—2017年青藏高原东北部雨季降水量变化及其贡献度分析[J]. 干旱区研究, 2021 , 38(1) : 22 -28 . DOI: 10.13866/j.azr.2021.01.03

Abstract

The study on the characteristics of precipitation in the Qinghai-Tibet Plateau under the background of climate warming is of great significance for revealing the impact of climate change on agriculture, animal husbandry, and ecological environment. Based on the daily precipitation data of 53 meteorological observation stations from May to September of 1961-2017, the characteristics of rainy season precipitation in the northeast Qinghai-Tibet Plateau and the relative contribution of changes in precipitation of different grades in precipitation increment were analyzed. The results showed that the rainy season precipitation in the arid region in the northeast of the Qinghai-Tibet Plateau increased and that in the semi-arid and semi-humid regions became extreme from 1961 to 2017. Precipitation intensity has generally increased in most areas. Further analysis showed that the change in rainy season precipitation in the northeast of the Qinghai-Tibet Plateau is caused by the change in precipitation intensity, and the increase in contribution of moderate rainfall grade precipitation is greater than that of other grade precipitation. The trend of precipitation extremization in the east of the semi-humid and semi-arid regions was obviously enhanced. The results are helpful in understanding the climatic effect of change in ecological environment on the northeast of Qinghai-Tibet Plateau.

参考文献

[1] 潘保田, 李吉均. 青藏高原: 全球气候变化的驱动机与放大器Ⅲ.青藏高原隆起对气候变化的影响[J]. 兰州大学学报: 自然科学版, 1996,32(1):108-115.
[1] [ Pan Baotian, Li Jijun. Qinghai-Tibetan Plateau: A driver and amplifier of the global climatic change Ⅲ: The effects of the uplift of Qinghai-Tibetan Plateau on climatic changes[J]. Journal of Lanzhou University: Naturnal Sciences, 1996,32(1):108-115. ]
[2] 姚檀栋, 朱立平. 青藏高原环境变化对全球变化的响应及其适应对策[J]. 地球科学进展, 2006,21(5):459-464.
[2] [ Yao Tandong, Zhu Liping. The response of environmental changes on Tibetan Plateau to global changes and adaptation strategy[J]. Advances in Earth Science, 2006,21(5):459-464. ]
[3] 姚檀栋, 朴世龙, 沈妙根, 等. 印度季风与西风相互作用在现代青藏高原产生连锁式环境效应[J]. 中国科学院院刊, 2017,32(9):976-984.
[3] [ Yao Tandong, Piao Shilong, Shen Miaogen, et al. Chained impacts on modern environment of interaction between westerlies and indian monsoon on Tibetan Plateau[J]. Bulletin of Chinese Academy of Sciences, 2017,32(9):976-984. ]
[4] 葛根巴图, 魏巍, 张晓, 等. 柴达木盆地极端气候时空趋势及周期特征[J]. 干旱区研究, 2020,37(2):304-313.
[4] [ Ge Genbatu, Wei Wei, Zhang Xiao, et al. Spatiotemporal trends and periodic features of climate extremes over the Qaidam Basin, China, during 1960-2014[J]. Arid Zone Research, 2020,37(2):304-313. ]
[5] 张旺雄, 刘普幸. 1961—2017年柴达木盆地干湿状况及其影响因子[J]. 干旱区研究, 2019,36(6):1391-1400.
[5] [ Zhang Wangxiong, Liu Puxing. Surface humid situation and its affecting factors in the Qaidam Basin from 1961 to 2017[J]. Arid Zone Research, 2019,36(6):1391-1400. ]
[6] 林厚博, 游庆龙, 焦洋, 等. 青藏高原及附近水汽输送对其夏季降水影响的分析[J]. 高原气象, 2016,35(2):309-317.
[6] [ Lin Houbo, You Qinglong, Jiao Yang, et al. Water vaporansportation and its influences on precipitation in summer over Qinghai-Xizang Plateau and its surroundings[J]. Plateau Meteorology, 2016,35(2):309-317. ]
[7] 李晓英, 姚正毅, 肖建华, 等. 1961—2010年青藏高原降水时空变化特征分析[J]. 冰川冻土, 2016,38(5):1233-1240.
[7] [ Li Xiaoying, Yao Zhengyi, Xiao Jianhua, et al. Analysis of the spatial-temporal variation characteristics of precipitation over the Tibetan Plateau from 1961 through 2010[J]. Journal of Glaciology and Geocryology, 2016,38(5):1233-1240. ]
[8] 韩熠哲, 马伟强, 王炳赟, 等. 青藏高原近30年降水变化特征分析[J]. 高原气象, 2017,36(6) : 1477-1486.
[8] [ Han Yizhe, Ma Weiqiang, Wang Bingyun, et al. Climatic characteristics of rainfall change over the Qinghai-Tibetan Plateau from 1980 to 2013[J]. Plateau Meteorology, 2017,36(6) : 1477-1486. ]
[9] 杨玮, 何金海, 王盘兴, 等. 近42年来青藏高原年内降水时空不均匀性特征分析[J]. 地理学报, 2011,66(3):376-384.
[9] [ Yang Wei, He Jinhai, Wang Panxing, et al. Inhomogeneity characteristics of intra-annual precipitation over the Tibetan Plateau in recent 42 years[J]. Acta Geographica and Sinica, 2011,66(3):376-384. ]
[10] 齐文文, 张百平, 庞宇, 等. 基于TRMM数据的青藏高原降水的空间和季节分布特征[J]. 地理科学, 2013,33(8):999-1005.
[10] [ Qi Wenwen, Zhang Baiping, Pang Yu, et al. TRMM-data based spatial and seasonal patterns of precipitation in the Qinghai-Tibet Plateau[J]. Scientia Geographica Sinica, 2013,33(8):999-1005. ]
[11] 王坤鑫, 张寅生, 张腾, 等. 1979—2017年青藏高原色林错流域气候变化分析[J]. 干旱区研究, 2020,37(3):652-662.
[11] [ Wang Kunxin, Zhang Yinsheng, Zhang Teng, et al. Analysis of climate in the Selin Co Basin, Tibetan Plateau. from 1979 to 2017[J]. Arid Zone Research, 2020,37(3):652-662. ]
[12] 张人禾, 苏凤阁, 江志红, 等. 青藏高原21世纪气候和环境变化预估研究进展[J]. 科学通报, 2015,60(32):3036-3047.
[12] [ Zhang Renhe, Su Fengge, Jiang Zhihong, et al. An overview of projected climate and environmental changes across the Tibetan Plateau in the 21st century[J]. China Science Bull, 2015,60(32):3036-3047. ]
[13] 韩国军, 王玉兰, 房世波. 近50年青藏高原气候变化及其对农牧业的影响[J]. 资源科学, 2011,33(10):1969-1975.
[13] [ Han GuoJun, Wang Yulan, Fang Shibo. Climate change over the Qinghai-Tibet Plateau and its impacts on local agriculture and animal husbandry in the last 50 years[J]. Resources Science, 2011,33(10):1969-1975. ]
[14] 李林, 李晓东, 校瑞香, 等. 青藏高原东北部气候变化的异质性及其成因[J]. 自然资源学报, 2019,34(7):1496-1505.
[14] [ Li Lin, Li Xiaodong, Xiao Ruixiang, et al. The heterogeneity of climate change and its genesis in the Northeastern Qinghai-Tibet Plateau[J]. Journal of Natural Resources, 2019,34(7):1496-1505. ]
[15] 冯晓莉, 刘彩红, 祁栋林. 青海省汛期极端强降水特征及影响[J]. 中国农学通报, 2016,32(5):125-130.
[15] [ Feng Xiaoli, Liu Caihong, Qi Donglin. Characteristics of extreme heavy precipitation events and their impacts in Qinghai Province[J]. Chinese Agricultural Science Bulletin, 2016,32(5):125-130. ]
[16] 戴升, 保广裕, 祁贵明, 等. 气候变暖背景下极端气候对青海祁连山水文水资源的影响[J]. 冰川冻土, 2019,41(5):1053-1066.
[16] [ Dai Sheng, Bao Guangyu, Qi Guiming, et al. Impacts of extreme climatic events under the context of climate warming on hydrology and water resources in the Qinghai Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2019,41(5):1053-1066. ]
[17] 杨昭明, 冯晓莉, 黄霞, 等. 1987—2017年青海省东部农业区粮食作物生产潜力及产量差时空变化特征[J]. 中国农学通报, 2019,35(3):26-33.
[17] [ Yang Zhaoming, Feng Xiaoli, Huang Xia, et al. Crops in eastern agricultural region of Qinghai during 1987-2017: Spatio-temporal variation characteristics of potential productivity and yield gaps[J]. Chinese Agricultural Science Bulletin, 2019,35(3):26-33. ]
[18] 杨昭明, 李万志, 冯晓莉, 等. 气候变暖背景下青海汛期暴雨洪涝及次生灾害风险评估[J]. 中国农学通报, 2019,35(3):131-138.
[18] [ Yang Zhaoming, Li Wanzhi, Feng Xiaoli, et al. Risk assessment of rainstorm flood and its secondary disasters during flood season in Qinghai under climate warming[J]. Chinese Agricultural Science Bulletin, 2019,35(3):131-138. ]
[19] 曾颖婷, 陆尔. 1961—2010年我国夏季总降水和极端降水的变化[J]. 气候变化研究进展, 2015,11(2):131-138.
[19] [ Zeng Yingting, Lu Er. Change of summer rainfall and extreme precipitation during1961-2010 in China[J]. Climatic Change Research, 2015,11(2):131-138. ]
[20] 李林, 李红梅, 申红艳, 等. 青藏高原气候变化的若干事实及其年际振荡的成因探讨[J]. 冰川冻土, 2018,40(6) : 1079-1089.
[20] [ Li Lin, Li Hongmei, Shen Hongyan, et al. The truth and inter annual oscillation causes for climate change in the Qinghai-Tibet Plateau[J]. Journal of Glaciology and Geocryology, 2018,40(6):1079-1089. ]
[21] 郑度, 李炳元. 中国生态地理区图[M]. 北京: 商务印书馆, 2005.
[21] [ Zheng Du, Li Bingyuan. Chinese Eco-geographic Map[M]. Beijing: Beijing Commercial Press, 2005. ]
[22] 中华人民共和国国家标准——降水量等级(GB/T 28592-2012)[S]. 北京: 中国标准出版社, 2012.
[22] [ National Standard of the People’s Republic of China precipitation Grade (GB/T 28592-2012) [M]. Beijing: China Standard Press, 2012. ]
[23] Karl, Thomas R Richard W Knight. Secular trends of precipitation amount, frequency, and intensity in the United States[J]. Bulletin of the American Meteorological Society, 1998,79(2):231-241.
[24] 徐新创, 张学珍, 戴尔阜, 等. 1961—2010年中国降水强度变化趋势及其对降水量影响分析[J]. 地理研究, 2014,33(7):1335-1347.
[24] [ Xu Xingchuang, Zhang Xuezhen, Dai Erfu, et al. Research of trend variability of precipitation intensity and their contribution to precipitation in China from 1961 to 2010[J]. Geographical Research, 2014,33(7):1335-1347. ]
[25] 胡钰玲, 张莹, 朱安豹, 等. 中国大陆中纬度带不同等级降水的变化特征[J]. 中国沙漠, 2017,37(2):332-342.
[25] [ Hu Yuling, Zhang Ying, Zhu Anbao, et al. Variation of precipitation in different classes in midlatitude belt of Chinese mainland[J]. Journal of Desert Research, 2017,37(2):332-342. ]
[26] 王腾, 孙晓光, 李白萍. 昌都市近36 a暴雨气候特征分析[J]. 暴雨灾害, 2017,36(1):75-80.
[26] [ Wang Teng, Sun Xiaoguang, Li Baiping. The climatic characteristic and its change of the Qamdo rainstorm in the past 36 years[J]. Torrential Rain and Disaster, 2017,36(1):75-80. ]
[27] 梁苏洁, 程善俊, 郝立生, 等. 1970—2015年京津冀地区暖季小时降水变化特征[J]. 暴雨灾害, 2018,37(2):105-114.
[27] [ Liang Sujie, Cheng Shanjun, Hao Lisheng, et al. Analysis on the characteristics of hourly precipitation variations in Beijing-Tianjin-He-bei region during 1970-2015[J]. Torrential Rain and Disasters, 2018,37(2):105-114. ]
[28] 魏凤英. 现代气候统计诊断与预测技术[M]. 北京: 气象出版社, 2007: 44-45.
[28] [ Wei Fengying. Modern Climatic Statistical Diagnosis and Prediction Technology[M]. Beijing: China Meteorological Press, 2007: 44-45.]
[29] 姚檀栋, 刘晓东, 王宁练. 青藏高原地区的气候变化幅度问题[J]. 科学通报, 2000,45(1):98-105.
[29] [ Yao Tandong, Liu Xiaodong, Wang Ninglian. The Qinghai-Tibet Plateau Region of the magnitude of the problem of climatechange[J]. Chinese Science Bulletin, 2000,45(1) : 98-105. ]
[30] 李万志, 余迪, 冯晓莉, 等. 基于风险度的青海省暴雨洪涝灾害风险评估[J]. 冰川冻土, 2019,41(3):680-688.
[30] [ Li Wanzhi, Yu Di, Feng Xiaoli, et al. Risk assessment of rainstorm and flood disasters based on the hazard grades/indices in Qinghai Province[J]. Journal of Glaciology and Geocryology, 2019,41(3):680-688. ]
[31] 张强, 林婧婧, 刘维成, 等. 西北地区东部与西部汛期降水跷跷板变化现象及其形成机制[J]. 中国科学: 地球科学, 2019,49(12):2064-2078.
[31] [ Zhang Qiang, Lin Jinjin, Liu Weicheng, et al. Precipitation seesaw phenomenon and its formation mechanism in the eastern and western parts of Northwest China during flood season[J]. Science China Earth Sciences, 2019,49(12):2064-2078. ]
[32] Yao T D, Masson-Delmotte V, Gao J, et al. A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: Observations and simulations[J]. Reviews of Geophysics, 2013,51(4):525-548.
[33] 朱艳欣, 桑燕芳. 青藏高原降水季节分配的空间变化特征[J]. 地理科学进展, 2018,37(11):1533-1544.
[33] [ Zhu Yanxin, Sang Yanfang. Spatial variability in the seasonal distribution of precipitation on the Tibetan Plateau[J]. Progress in Geography, 2018,37(11):1533-1544. ]
[34] 高继卿, 杨晓光, 董朝阳, 等. 气候变化背景下中国北方干湿区降水资源变化特征分析[J]. 农业工程学报, 2015,31(12):99-110.
[34] [ Gao Jiqing, Yang Xiaoguang, Dong Chaoyang, et al. Precipitation resource changed characteristics in arid and humid regions in Northern China with climate changes[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015,31(12):99-110. ]
文章导航

/