植物与植物生理

植物叶片光合作用的气孔与非气孔限制研究综述

展开
  • (1. 山西大学,山西 太原 030006;2. 中国科学院西北生态环境资源研究院,甘肃 兰州 730000)
高冠龙(1988-),男,讲师,主要从事生态水文和植物生理生态方面的研究.Email: gaoguanlong@sxu.edu.cn

收稿日期: 2017-10-27

  修回日期: 2017-12-22

  网络出版日期: 2018-07-19

基金资助

中国科学院内陆河流域生态水文重点试验室(KLEIRB-2S-16-02)资助

An overview of stomatal and non-stomatal limitations to photosynthesis of plants

Expand
  • (1 Shanxi University, Taiyuan, 030006, Shanxi,China;2 Northwest Institute of Eco-Environment and Resources, CAS, Lanzhou, 730000, Gansu,China.)

Received date: 2017-10-27

  Revised date: 2017-12-22

  Online published: 2018-07-19

摘要

外界胁迫条件对植物生长和代谢的影响是多方面的,其中对光合作用的影响尤为突出。植物叶片的光合作用是影响生产力和产量高低的重要因素,因此,植物光合作用及其机制仍是当前植物生理生态领域研究的热点问题。然而,在自然或人工控制条件下,光合作用主要受气孔还是非气孔因子的限制,目前尚无定论。本文从气孔与非气孔限制值的计算方法、不同条件下植物叶片光合作用的气孔与非气孔限制以及对光合作用的影响三个方面展开了讨论:①对(相对)气孔与非气孔限制值的各种计算方法进行了总结,并分析了各种计算方法的局限性,为判断一定条件下光合作用的主要限制因子提供依据。②对以往光合作用的气孔与非气孔限制研究中涉及的外界胁迫条件进行了分类,从人工控制条件(水分胁迫、盐碱胁迫、多因子复合胁迫)及自然条件等方面进行了总结。③分析了气孔与非气孔限制因子对光合作用的影响途径。在未来的研究工作中,揭示和探讨同一物种在不同生长发育阶段、不同生境类型(水热盐养、人工控制与自然环境)等条件下的气孔与非气孔限制因子的变化特征与影响机理,这将是其发展趋势和重点方向。

本文引用格式

高冠龙,冯起,张小由,司建华,鱼腾飞 . 植物叶片光合作用的气孔与非气孔限制研究综述[J]. 干旱区研究, 2018 , 35(4) : 929 -937 . DOI: 10.13866/j.azr.2018.04.22

Abstract

External stresses affect the plant growth and metabolism in a number of ways, especially the photosynthesis (Pn). As Pn is an important factor affecting productivity, the study on its mechanism is still a hot issue in the field of plant physiology and ecology. Pn, however, is mainly restricted by stomatal or non-stomatal factors, and it has not been determined yet. This paper mainly discussed the methods for calculating the stomatal and non-stomatal limit values (Ls and Ci (sub-stomatal CO2 concentration)/gs (the stomatal conductance)), stomatal and non-stomatal limitations under different stresses and the effects on Pn: (1) We summarized the methods for calculating the (relative) Ls and Ci /gs values, which could be the basis for judging the main restriction factors; (2) We classified the external stresses and summarized the achievements from the aspects of manual controlling conditions (water, salt-alkali and multi-factor stresses) and natural conditions of the previous studies; (3) We analyzed the impact ways of stomatal and non-stomatal factors on Pn. The features of the Ls and Ci /gs, values and the mechanisms of one species at different growth and development stages and in different habitats (hydrothermal, salty, nutrient, and artificial and natural conditions) were explored and discussed, and this will be the key trend and direction for researching.

参考文献

 
[1] 贺军民, 佘小平, 刘成, 等. 增强UV-B辐射和Nacl复合胁迫下绿豆光合作用的气孔与非气孔限制[J]. 植物生理与分子生物学学报, 2004, 30(1):53-58. [He Junmin, She Xiaoping, Liu Cheng, et al. Stomatal and nonstomatal limitations of photosyntllesis in Mung Bean leaves under the combination of enhanced UV-B radiation and NaCl stress[J]. Journal of Plant Physiology and Molecular Biology, 2004, 30(1):53-58.]
[2] 朱新广, 张其德. NaCl对光合作用影响的研究进展[J]. 植物学通报, 1999, 16(4):332-338. [Zhu Xinguang, Zhang Qide. Advances in the research on the effects of NaCl on photosynthesis[J]. Chinese Bulletin of Botany, 1999, 16(4):332-338.]
[3] 许大全. 气孔的不均匀关闭与光合作用的非气孔限制[J]. 植物生理学通讯, 1995, 31(4):246-252. [Xu Daquan. Non-uniform stomatal closure and non-stomatal limitation of Photosynthesis[J]. Plant Physiology Communications, 1995, 31(4):246-252.]
[4] Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis[J]. Annual Review of Plant Physiology, 1982, 33(1):317-345.
[5] Flexas J, Bota J, Loreto F, et al. Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants[J]. Plant Biology, 2004, 6(3):269-279.
[6] Grassi G, Magnani F. Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees[J]. Plant, Cell & Environment, 2005, 28(7):834-849.
[7] 关义新, 戴俊英. 水分胁迫下植物叶片光合的气孔与非气孔限制. 植物生理学通讯, 1995, 31(4):293-297. [Guan Yixin, Dai Junying. The photosynthesis stomatal and nonstomatal limitation of plant leaves under water stress[J]. Plant Physiology Communications, 1995, 31(4):293-297.]
[8] Berry J A, Downton W J S. Environmental Regulation of Photosynthesis[M]. Berlin :Springer. 1982: 263-343.
[9] 刘孟雨, 陈培元. 水分胁迫条件下气孔和非气孔因素对小麦光合的限制[J]. 植物生理学通讯, 1990(4):24-27. [Liu Mengyu, Chen Peiyuan. Effects of stomatal and nonstomatal factors on wheat photosynthesis under water stress[J]. Plant Physiology Communications, 1990(4):24-27.]
[10] Ramanjulu S, Sreenivasulu N, Sudhakar C. Effect of water stress on photosynthesis in two mulberry genotypes with different drought tolerance[J]. Photosynthetica, 1998, 35(2):279-283.
[11] Ramanjulu S, Sreenivasalu N, Kumar S G, et al. Photosynthetic characteristics in mulberry during water stress and rewatering[J]. Photosynthetica, 1998, 35(2):259-263.
[12] Jones H G. Stomatal control of photosynthesis and transpiration[J]. Journal of Experimental Botany, 1998, 49(Special Issue):387-398.
[13] Monneveux P, Rekika D, Acevedo E, et al. Effect of drought on leaf gas exchange, carbon isotope discrimination, transpiration efficiency and productivity in field grown durum wheat genotypes[J]. Plant Science, 2006, 170(4):867-872.
[14] Zhang X, Wu N, Li C. Physiological and growth responses of populus davidiana ecotypes to different soil water contents[J]. Journal of Arid Environments, 2005, 60(4):567-579.
[15] Griffiths H, Parry M. Plant responses to water stress[J]. Annals of Botany, 2002, 89(7):801-802.
[16] Flexas J, Medrano H. Drought-inhibition of photosynthesis in C3 plants: Stomatal and non-stomatal limitations revisited[J]. Annals of Botany, 2002, 89(2):183-189.
[17] Mantlana K, Arneth A, Veenendaal E, et al. Photosynthetic properties of C4 plants growing in an African savanna/wetland mosaic[J]. Journal of Experimental Botany, 2008, 59(14): 3941-3952.
[18] Anev S, Ivanova A, Tzvetkova N, et al. Stomatal control on photosynthesis in drought-treated subalpine pine saplings[J]. Genetics and plant physiology, 2016, 6(1/2): 43-53.
[19] Signarbieux C, Feller U. Non-stomatal limitations of photosynthesis in grassland species under artificial drought in the field[J]. Environmental and Experimental Botany, 2011, 71(2):192-197.
[20] Ni B R, Pallardy S G. Stomatal and nonstomatal limitations to net photosynthesis in seedlings of woody angiosperms[J]. Plant Physiology, 1992, 99(4):1502-1508.
[21] 裴斌, 张光灿, 张淑勇, 等. 土壤干旱胁迫对沙棘叶片光合作用和抗氧化酶活性的影响[J]. 生态学报, 2013, 33(5):1386-1396. [Pei Bin, Zhang Guangcan, Zhang Shuyong, et al. Effects of soil drought stress on photosynthetic characteristics and antioxidant enzyme activities in Hippophae rhamnoides Linn. seedings[J]. Acta Ecologica Sinica, 2013, 33(5):1386-1396.]
[22] 韩瑞宏, 卢欣石, 高桂娟, 等. 紫花苜蓿 (medicago sativa) 对干旱胁迫的光合生理响应[J]. 生态学报, 2007, 27(12):5229-5237. [Han Ruihong, Lu Xinshi, Gao Guijuan, et al. Photosynthetic physiological response of alfalfa (medicago sativa) to drought stress[J]. Acta Ecologica Sinica, 2007, 27(12):5229-5237.]
[23] 李周, 赵雅洁, 宋海燕, 等. 不同水分处理下喀斯特土层厚度异质性对两种草本叶片解剖结构和光合特性的影响[J]. 生态学报, 2018, 38(2):1-12. [Li Zhou, Zhao Yajie, Song Haiyan, et al. Effects of karst soil thickness heterogeneity on the leaf anatomical structure and photosynthetic traits of two grasses under different water treatments[J]. Acta Ecologica Sinica, 2018, 38(2):1-12.]
[24] 王春艳, 庞艳梅, 李茂松, 等. 干旱胁迫对大豆气孔特征和光合参数的影响[J]. 中国农业科技导报, 2013, 15(1):109-115. [Wang Chunyan, Pang Yanmei, Li Maosong, et al. Effects of drought stress on soybean stomatal characteristics and photosynthetic parameter[J]. Journal of Agricultural Science and Technology, 2013, 15(1):109-115.]
[25] Campos H, Trejo C, Peña-Valdivia C B, et al. Stomatal and non-stomatal limitations of bell pepper (capsicum annuum L.) plants under water stress and re-watering: Delayed restoration of photosynthesis during recovery[J]. Environmental and Experimental Botany, 2014, 98:56-64.
[26] 陈凯利, 李建明, 贺会强, 等. 水分对番茄不同叶龄叶片光合作用的影响[J]. 生态学报, 2013, 33(16):4919-4929. [Chen Kaili, Li Jianming, He Huiqiang, et al. Effects of water on photosynthesis in different age of tomato leaves[J]. Acta Ecologica Sinica, 2013, 33(16):4919-4929.]
[27] Varone L, Ribas-Carbo M, Cardona C, et al. Stomatal and non-stomatal limitations to photosynthesis in seedlings and saplings of mediterranean species pre-conditioned and aged in nurseries: Different response to water stress[J]. Environmental and Experimental Botany, 2012, 75:235-247.
[28] 张仁和, 郑友军, 马国胜, 等. 干旱胁迫对玉米苗期叶片光合作用和保护酶的影响[J]. 生态学报, 2011, 31(5):1303-1311. [Zhang Renhe, Zheng Youjun, Ma Guosheng, et al. Effects of drought stress on photosynthetic traits and protective enzyme activity in maize seeding[J]. Acta Ecologica Sinica, 2011, 31(5):1303-1311.]
[29] Charlotte C R, Michael E L. Water relations and photosynthesis along an elevation gradient for Artemisia tridentata during an historic drought[J]. Oecologia, 2016, 181:65-76.
[30] Guo S, Zhao K. The possible mechanisms of NaCl inhibit photosythesis of maize seedlings[J]. Acta Phytophysiologica Sinica, 2001, 27(6): 461-466.
[31] 黄清荣, 祁琳, 柏新富. 根环境供氧状况对盐胁迫下棉花幼苗光合及离子吸收的影响[J]. 生态学报, 2018, 38(2):1-9. [Huang Qingrong, Qi Lin, Bai Xinfu. Effects of rhizosphere aeration on photosythesis and ion absorption in cotton seedings under water stress[J]. Acta Ecologica Sinica, 2018, 38(2):1-9.]
[32] 刘霞. Na2CO3胁迫下蚕豆光合作用的气孔与非气孔限制[J]. 安徽农业科学, 2010, 38(6):2861-2862. [Liu Xia. Research on the limitation of stomatal and nonstomatal to ban photosythesis under the Na2CO3[J]. Journal of Anhui Agricultural Science, 2010, 38(6):2861-2862.]
[33] 陈志强, 李庆贱, 时瑞亭, 等. 苏打盐碱胁迫对西伯利亚白刺光合和生长的影响[J]. 北京林业大学学报, 2011, 33(3):31-37. [Chen Zhiqiang, Li Qingjian, Shi Ruiting, et al. Effects of soda saline-alkaline stress on photosynthesis and growth of Nitraria sibirica[J]. Journal of Beijing Forestry University, 2011, 33(3):31-37.]
[34] 吴成龙, 尹金来, 徐阳春, 等. 碱胁迫对菊芋幼苗生长及其光合作用和抗氧化作用的影响[J]. 西北植物学报, 2006, 26(3):447-454. [Wu Chenglong, Yin Jinlai, Xu Yangchun, et al. Effects of alkaline stress on growth, photosynthesis and antioxidation of Helianthus tuberosus seedlings[J]. Acta Botanica Boreali-Occidentalia Sinica, 2006, 26(3):447-454.]
[35] 白文波, 李品芳, 李保国. NaCl和NaHCO3胁迫下马蔺生长与光合特性的反应 [J]. 土壤学报, 2008, 45(2):328-335. [Bai Wenbo, Li Pinfang, Li Baoguo. Response of Iris Lactea Var. Chinensis to Nacl and NaHCO3 stress in growth and photosynthesis[J]. Acta Pedologica Sinica, 2008, 45(2):328-335.]
[36] 王聪, 杨恒山, 董永义. NaCl 胁迫下外源壳聚糖对菜用大豆光合作用及叶绿体活性氧代谢的影响[J]. 华北农学报, 2016, 31(4): 162-167. [Wang Cong, Yang Hengshan, Dong Yongyi. Effects of exogenous chitosan on photosynthesis and chloroplast reactive oxygen species metabolism of vegetable soybean under NaCl stress[J]. Acta Agriculturae Boreali-Sinica, 2016, 31(4): 162-167.]
[37] 张媛华, 王真, 佘小平. 增强UV-B辐射和Cd2+复合胁迫下绿豆幼苗Cd积累和光合作用的气孔与非气孔限制[J]. 安徽农业科学, 2011, 39(9):5069-5072. [Zhang Yuanhua, Wang Zhen, She Xiaoping. Stomatal and nonstomatal limitations of photosynthesis in P. radiatus L. seedling leaves under the combination of enhanced UV-B radiation and Cd2+ stress[J]. Journal of Anhui Agricultural Science, 2011, 39(9):5069-5072.]
[38] Dubé S, Bornman J. Response of spruce seedlings to simultaneous exposure to ultraviolet-b radiation and cadmium[J]. Plant Physiology and Biochemistry, 1992, 30(6):761-767.
[39] Larsson E H,  Bornman J F, Asp H. Influence of UV-B radiation and Cd2+ on chlorophyll fluorescence, growth and nutrient content in brassica napus[J]. Journal of Experimental Botany, 1998, 49(323):1031-1039.
[40] Shukla U C, Joshi P C, Kakkar P. Synergistic action of ultraviolet-B radiation and cadmium on the growth of wheat seedlings[J]. Ecotoxicology and Environmental Safety, 2002, 51(2):90-96.
[41] 强维亚, 杨晖, 陈拓, 等. 镉和增强紫外线-B辐射复合作用对大豆生长的影响[J]. 应用生态学报, 2004, 15(4):697-700. [Qiang Weiya, Yang Hui, Chen Tuo, et al. Effect of the combination of cadmium and UV-B radiation on soybean growth[J]. Chinese Journal of Applied Ecology, 2004, 15(4):697-700.]
[42] Pereira E G, Oliva M A, Rosado-Souza L, et al. Iron excess affects rice photosynthesis through stomatal and non-stomatal limitations[J]. Plant Science, 2013, 201:81-92.
[43] Noormets A, Sober A, Pell E, et al. Stomatal and non-stomatal limitation to photosynthesis in two trembling aspen (populus tremuloides Michx.) clones exposed to elevated CO2 and/or O3[J]. Plant, Cell & Environment, 2001, 24(3):327-336.
[44] 刘全吉, 孙学成, 胡承孝, 等. 碑对小麦生长和光合作用特性的影响[J]. 生态学报, 2009, 29(2):854-859. [Liu Quanji, Sun Xuecheng, Hu Chengxiao, et al. Growth and photosynthesis characteristics of wheat (Triticum aestivum L.) under arsenic stress condition[J]. Acta Ecologica Sinica, 2009, 29(2):854-859.]
[45] 秦建桥, 夏北成, 赵鹏. 五节芒不同种群对Cd污染胁迫的光合生理响应[J]. 生态学报, 2010, 30(2):288-299. [Qin Jianqiao, Xia Beicheng, Zhao Peng. Photosynthetic physiological response of two Miscanthus floridulus populations to Cd stress[J]. Acta Ecologica Sinica, 2010, 30(2):288-299.]
[46] 帕提古力·麦麦提, 巴特尔·巴克, 海利力·库尔班. 沙尘胁迫对阿月浑子光合作用及叶绿素荧光特性的影响[J]. 生态学报, 2014, 34(22):6450-6459. [Patigul Mamat, Batur Bake,  Halil Kurban. Influence of dust stress on the photosynthetic and chlorophyll fluorescence characteristics of Pistacia vera L.[J]. Acta Ecologica Sinica, 2014, 34(22):6450-6459.]
[47] 徐小逊, 董袁媛, 邓玉兰, 等. 镉胁迫对豨莶生长及光合作用相关参数的影响[J]. 农业环境科学学报, 2016, 35(9):1672-1679. [Xu Xiaoxun, Dong Yuanyuan, Deng Yulan, et al. Effects of cadmium stress on growth and photosynthetic parameters of Sigesbeckia orientalis L.[J]. Journal of Agro-Environment Science, 2016, 35(9):1672-1679.]
[48] 何亚飞, 张珊珊, 孙鑫, 等. 高频度模拟酸雨胁迫条件下菲白竹的光合响应[J]. 南京林业大学学报( 自然科学版), 2016, 40(4): 49-55. [He Yafei, Zhang Shanshan, Sun Xin, et al. Response of photosynthetic characteristics of Pleioblastus fortunei to high frequent simulated acid rain[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2016, 40(4): 49-55.]
[49] 徐西红, 李腾腾, 李欢. 接种AM真菌对甘薯光合作用及碳磷代谢酶活性的影响[J]. 水土保持学报, 2016, 30(2): 255-259. [Xu Xihong, Li Tengteng, Li Huan. Effects of arbuscular mycorrhizal fungi on photosynthetic characteristics and metabolic enzyme activities of carbon and phosphorus of sweet potato[J]. Journal of Soil and Water Conservation, 2016, 30(2): 255-259.]
[50] 许艳梅, 贝丽霞, 张恒. 双酚A对玉米幼苗光合及抗氧化作用的影响[J]. 植物生理学报, 2016, 52(1): 101-108. [Xu Yanmei, Bei Lixia, Zhang Heng. Effects of bisphenol A on photosynthesis and antioxidation of maize (Zea mays) seedlings[J]. Plant Physiology Journal, 2016, 52(1): 101-108.]
[51] Kubiskem M, Abrams M. Stomatal and nonstomatal limitations of photosynthesis in 19 temperate tree species on contrasting sites during wet and dry years[J]. Plant, Cell & Environment, 1993, 16(9):1123-1129.
[52] Herrera A, Tezara W, MarÍn O, et al. Stomatal and non-stomatal limitations of photosynthesis in trees of a tropical seasonally flooded forest[J]. Physiologia Plantarum, 2008, 134(1):41-48.
[53] Tissue D T, Griffin K L, Turnbull M H, et al. Stomatal and non-stomatal limitations to photosynthesis in four tree species in a temperate rainforest dominated by dacrydium cupressinum in new zealand[J]. Tree Physiology, 2005, 25(4):447-456.
[54] 杨泽粟, 张强, 郝小翠. 自然条件下半干旱雨养春小麦生育后期旗叶光合的气孔与非气孔限制[J]. 中国生态农业学报, 2015, 23(2):174-182. [Yang Zesu, Zhang Qiang, Hao Xiaocui. Stomatal or non-stomatal limitation of photosynthesis of spring wheat flag leaf at late growth stages under natural conditions in semiarid rainfed regions[J]. Chinese Journal of Eco-Agriculture, 2015, 23(2):174-182.]
[55] 韩瑞锋, 李建明, 胡晓辉, 等. 甜瓜幼苗叶片光合变化特性[J]. 生态学报, 2012, 32(5):1471-1480. [Han Ruifeng, Li Jianming, Hu Xiaohui, et al. Research on dynamic characteristics of photosynthesis in muskmelon seedling leaves[J]. Acta Ecologica Sinica, 2012, 32(5):1471-1480.]
[56] 郎莹, 汪明. 春夏两季连翘光合作用的土壤水分阈值效应及生产力分级[J]. 林业科学, 2016, 52(2):38-46. [Lang Ying, Wang Ming. Threshold effect of photosynthesis in forsythia suspense to soil water and its photosynthetic productivity grading in spring and summer[J]. Scientia Silvae Sinicae, 2016, 52(2):38-46.]
[57] Epron D, Dreyer E. Stomatal and non stomatal limitation of photosynthesis by leaf water deficits in three oak species: a comparison of gas exchange and chlorophyll a fluorescence data[J].Annales of Forest Science, 1990, 47(5): 435-450.
[58] Yu D J, Kim S J, Lee H J. Stomatal and non-stomatal limitations to photosynthesis in field-grown grapevine cultivars[J]. Biologia Plantarum, 2009, 53(1): 133-137.
[59] 史吉平, 董永华. 水分胁迫对小麦光合作用的影响[J]. 麦类作物学报, 1995(5):49-51. [Shi Jiping, Dong Yonghua. Effects on photosynthesis of wheat under water stress[J]. Journal of Triticeae Crops, 1995(5):49-51.]
[60] 王华田, 孙明高, 崔明刚, 等. 土壤水分状况对苗期银杏生长及生理特性影响的研究[J]. 山东农业大学学报(自然科学版), 2000, 31(1):74-78. [Wang Huatian, Sun Minggang, Cui Minggang et al. Studies on growth and physiological characteristics of the seedlings of Ginkgo Biloba in different soil moisture conditions[J]. Journal of Shandong Agricultural University (Natural Science), 2000, 31(1):74-78.]
[61] Flexas J, Badger M, Chow W S, et al. Analysis of the relative increase in photosynthetic O2 uptake when photosynthesis in grapevine leaves is inhibited following low night temperatures and/or water stress[J]. Plant Physiology, 1999, 121(2):675-684.
[62] Flexas J, Escalona J, Medrano H. Water stress induces different levels of photosynthesis and electron transport rate regulation in grapevines[J]. Plant, Cell & Environment, 1999, 22(1):39-48.
[63] Wu B J, Chow W S, Liu Y J, et al. Effects of stomatal development on stomatal conductance and on stomatal limitation of photosynthesis in Syringa oblata and Euonymus japonicus Thunb[J]. Plant Science, 2014, 229:23-31.
[64] Parry M A, Andralojc P J, Khan S, et al. Rubisco activity: Effects of drought stress[J]. Annals of Botany, 2002, 89(7):833-839.
[65] Lawlor D W. Limitation to photosynthesis in water-stressed leaves: Stomata vs. Metabolism and the role of ATP[J]. Annals of Botany, 2002, 89(7):871-885.
[66] 王孝威, 段艳红, 曹慧, 等. 水分胁迫对短枝型果树光合作用的非气孔限制[J]. 西北植物学报, 2003, 23(9): 1609-1613. [Wang Xiaowei, Duan Yanhong, Cao Hui, et al. The photosynthetic nonstomatal limitation of spur-apple young trees under water stress[J]. Acta Botanica Boreali-Occidentalia Sinica,2003,23(9): 1609-1613.]
[67] 柯世省. 水分胁迫下夏蜡梅光合作用的气孔和非气孔限制[J]. 浙江林业科技, 2006, 26(6): 1-5. [Ke Shixing. Photosynthetic stomatal and nonstomatal limit of Calycanthus chinensis under water stress[J]. Journal of Zhejiang Forestry Science and Technology,2006,26(6): 1-5.]
[68] 王宝山, 赵思齐.干旱对小麦幼苗膜脂过氧化及保护酶的影响[J].山东师范大学学报(自然科学版),1987,2(1):29-39. [Wang Baoshan, Zhao Siqi. Effect of drought on lipid peroxidation and defensive enzymes in the wheat seedlings[J]. Journal of Shandong Normal University (Natural Sciences Edition), 1987, 2(1):29-39.]
[69] 徐世昌,沈秀瑛.土壤干旱下玉米叶细胞膜脂过氧化和膜磷脂脱酯化反应以及膜超微结构的变化[J].作物学报,1994,20(5):564-569. [Xu Shichang, Shen Xiuying. Changes of lipid peroxidation,reasertification of phosphatide and ultrastructure of membrane in leaf cells of Maize under soil drought condition[J]. Acta Agronomica Sinica, 1994, 20(5):564-569.]
[70] Moran J F,Becana M,Iturbe-Ormaetxe I, et al. Drought induces oxidative stress in pea plants[J]. Planta,1994,194(3):346-352.
文章导航

/