天气与气候

青海三江源高寒荒漠与高寒草甸地表感热通量与潜热通量特征

  • 颜玉倩 ,
  • 李甫 ,
  • 陈奇 ,
  • 杜华礼 ,
  • 孙树娇
展开
  • 青海省气象科学研究所,青海省防灾减灾重点实验室,青海 西宁 810001
颜玉倩(1990-),女,硕士,高级工程师,主要从事高寒生态与气候变化研究. E-mail: yan_yq1113@sina.com
陈奇. E-mail: qq7qq7cq@163.com

收稿日期: 2024-05-15

  修回日期: 2024-07-24

  网络出版日期: 2025-03-17

基金资助

国家自然科学基金区域创新发展联合基金(U22A20556);青海省科技基础研究计划(2023-ZJ-737);国家自然基金联合基金(U21A2021)

Characteristic of surface heat fluxes in alpine desert and meadow in the Three Rivers Source in Qinghai

  • YAN Yuqian ,
  • LI Fu ,
  • CHEN Qi ,
  • DU Huali ,
  • SUN Shujiao
Expand
  • Key Laboratory of Disaster Prevention and Mitigation in Qinghai Province, Qinghai Institute of Meteorological Science, Xining 810001, Qinghai, China

Received date: 2024-05-15

  Revised date: 2024-07-24

  Online published: 2025-03-17

摘要

土地利用变化的生物地球物理过程是研究全球变化的重要内容,认知不同植被覆盖地表热通量变化特征,对于进一步认识全球变化具有重要科学意义。通过位于青海三江源区沱沱河高寒荒漠和隆宝高寒草甸地表热通量涡动观测及梯度微气象观测,分别估算感热及潜热输送系数;重建基于气象站观测数据的1981—2020年沱沱河与玉树地表感热、潜热通量月值,探讨地表感热、潜热通量与气象要素间的关系及与再分析数据进行对比分析。结果表明:(1) 对比总体输送法计算的热通量值与野外站涡动观测值,两个站点的地表感热通量相关性要优于地表潜热通量,不论是地表感热通量还是地表潜热通量,其相关性沱沱河站要优于隆宝站。(2) 不同下垫面类型地表热通量的年际变化并不一致。地表潜热通量、地表感热通量及地面热源在高寒荒漠均呈现出微弱减小趋势,但在高寒草甸均呈上升趋势。(3) 地表感热通量和地表潜热通量的多年月平均值在沱沱河站和隆宝站均反映出单峰值,地表感热通量在5月达到最大,地表潜热通量在7月达到最大。地面热源在两站略有不同,沱沱河站地面热源表现为单峰值,在6月达到最大,而在玉树站表现双峰值,在5月和8月达到峰值。(4) 沱沱河站的热通量计算值与再分析资料的相关性要优于玉树站。玉树站地表感热通量存在明显的高估和低估,玉树站地表潜热通量在2008年前计算值低于再分析值,在2008年后高于再分析值。

本文引用格式

颜玉倩 , 李甫 , 陈奇 , 杜华礼 , 孙树娇 . 青海三江源高寒荒漠与高寒草甸地表感热通量与潜热通量特征[J]. 干旱区研究, 2025 , 42(3) : 420 -430 . DOI: 10.13866/j.azr.2025.03.03

Abstract

The biogeophysical process of land use change is an essential part of global change studies. Recognizing the characteristics of land surface heat flux under different vegetation cover is of great scientific significance for further understanding global change. Based on the eddy observation of the surface heat flux and gradient micrometeorological data of the Tuotuohe and Longbao field stations, the sensible and latent heat transfer coefficients were constructed by an inverse algorithm. Using this coefficient, the monthly heat flux values from 1981 to 2020 were constructed based on the Tuotuohe and Yushu meteorological stations. The interannual and monthly changes of heat flux were analyzed. The relationship between heat flux and meteorological elements is discussed systematically, and the calculated heat flux data are compared with the reanalysis data in detail. The conclusions are as follows: (1) Compared with the heat flux calculated by the total transport method and the field station’s eddy observation value, the correlation of the two stations’ surface sensible heat flux is better than that of the surface latent heat flux; that of the Tuotuohe station is better than that of the Longbao station. (2) The interannual variation of surface heat flux of different underlying surface types is not consistent. From 1981 to 2020, the surface latent and sensible heat fluxes and surface heat source of the Tuotuohe station displayed a weak decreasing trend. The Yushu station’s surface sensible and latent heat fluxes and surface heat source display an upward trend. (3) The monthly averages of surface sensible and latent heat fluxes display a single peak at both stations. The surface sensible heat flux reaches its maximum in May, and the surface latent heat flux reaches its maximum in July. The surface heat source differs slightly between the two stations: it exhibits a single peak at the Tuotuohe station, reaching a maximum in June, and a double peak at the Yushu station, reaching a peak in May and August. (4) The correlation between the calculated heat flux and the reanalysis data of the Tuotuohe station is better than that of the Yushu station. The surface sensible heat flux of the Yushu station is overestimated and underestimated. The calculated value of the Yushu station’s surface latent heat flux is lower than the reanalysis value before 2008 and higher than that after 2008.

参考文献

[1] 吴国雄, 刘屹岷, 何编, 等. 青藏高原感热气泵影响亚洲夏季风的机制[J]. 大气科学, 2018, 42(3): 488-504.
  [Wu Guoxiong, Liu Yimin, He Bian, et al. Review of the impact of the Tibetan Plateau sensible heat driven air-pump on the Asian summer monsoon[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(3): 488-504.]
[2] Yanai M. Seasonal heating of the Tibetan plateau and its effects on the evolution of the Asia summer monsoon[J]. Journal of the Meteorological Society of Japan, 1992, 79(1): 419-434.
[3] 李瑜洁, 高晓清, 马耀明, 等. 夏季青藏高原大气热机效率及热源特征[J]. 中国科学: 地球科学, 2024, 67(1): 117-133.
  [Li Yujie, Gao Xiaoqing, Ma Yaoming, et al. Study on the atmospheric heat engine efficiency and heat source characteristics of the Qinghai-Tibet Plateau in summer[J]. Scientia Sinica (Terrae), 2024, 67(1): 117-133.]
[4] 周秀骥, 赵平, 陈军明, 等. 青藏高原热力作用对北半球气候影响的研究[J]. 中国科学: 地球科学, 2009, 39(11): 1473-1486.
  [Zhou Xiuji, Zhao Ping, Chen Junming, et al. Impacts of thermodynamic processes over the Tibetan Plateau on the Northern Hemispheric climate[J]. Scientia Sinica (Terrae), 2009, 39(11): 1473-1486.]
[5] 陈忠民, 闵文宾, 刘富明. 青藏高原地表热源异常与四川盆地夏季降水的关联[J]. 气象, 2003, 29(5): 9-12.
  [Chen Zhongmin, Min Wenbin, Liu Fuming. Relationship between surface heating fields over Qinghai-Xizang Plateau and precipitation in Sichuan Basin during summer[J]. Meteorological Monthly, 2003, 29(5): 9-12.]
[6] 周俊前, 刘新, 李伟, 等. 青藏高原春季地表感热异常对西北地区东部降水变化的影响[J]. 高原气象, 2016, 35(4): 845-853.
  [Zhou Junqian, Liu Xin, Li Wei, et al. Relationship between surface sensible heating over the Qinghai-Xizang Plateau and precipitation in the eastern part of Northwest China in spring[J]. Plateau Meteorology, 2016, 35(4): 845-853.]
[7] 赖欣, 范广洲, 华维, 等. 青藏高原陆气相互作用对东亚区域气候影响的研究进展[J]. 高原气象, 2021, 40(6): 1263-1277.
  [Lai Xin, Fan Guangzhou, Hua Wei, et al. Progress in the study of influence of the Qinghai-Xizang Plateau land atmosphere interaction on East Asia regional climate[J]. Plateau Meteorology, 2021, 40(6): 1263-1277.]
[8] 段安民, 肖志祥, 王子谦. 青藏高原冬春积雪和地表热源影响亚洲夏季风的研究进展[J]. 大气科学, 2018, 42(4): 755-766.
  [Duan Anmin, Xiao Zhixiang, Wang Ziqian. Impacts of the Tibetan Plateau winter/spring snow depth and surface heat source on Asian summer monsoon: A review[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(4): 755-766.]
[9] 黄子煜. 青藏高原地气相互作用过程及其影响高原夏季降水的数值模拟研究[D]. 合肥: 中国科学技术大学, 2022: 66-79.
  [Huang Ziyu. The Numerical Simulation of Land-atmosphere Interaction Process over the Tibetan Plateau and Its Impact on Plateau Summer Precipitation[D]. Hefei: University of Science and Technology of China, 2022: 66-79.]
[10] 祁艳, 颜玉倩, 李金海, 等. 青藏高原5-10月地表潜热通量与青海同期降水之间的关系[J]. 干旱区研究, 2019, 36(3): 529-536.
  [Qi Yan, Yan Yuqian, Li Jinhai, et al. Relationship between surface latent heat flux over the Qinghai-Tibetan Plateau and precipitation in Qinghai from May to October[J]. Arid Zone Research, 2019, 36(3): 529-536.]
[11] 陈万隆, 翁笃鸣. 关于青藏高原感热和潜热旬总量计算方法的初步研究[C]// 青藏高原气象科学实验论文集(二). 北京: 科学出版社1984: 35-45.
  [Chen Wanlong, Weng Duming. A preliminary study on the calculation method of sensible heat and latent heat in Qinghai-Xizang Plateau[C]// Collection of Papers on Meteorological Science Experiments on the Qinghai-Xizang Plateau (II). Beijing: Science Press, 1984: 35-45.]
[12] 李国平, 段延扬, 吴贵芬. 青藏高原西部的地面热源强度及地面热量平衡[J]. 地理科学, 2003, 23(1): 13-18.
  [Li Guoping, Duan Yanyang, Wu Guifen. The intersity of surface heat source and surface heat balance on the western Qinghai-Xizang Plateau[J]. Scientia Geographica Sinica, 2003, 23(1): 13-18.]
[13] 竺夏英, 刘屹岷, 吴国雄. 夏季青藏高原多种地表感热通量资料的评估[J]. 中国科学: 地球科学, 2012, 42(7): 1104-1112.
  [Zhu Xiaying, Liu Yimin, Wu Guoxiong. An assessment of summer sensible heat flux on the Tibetan Plateau from eight data sets[J]. Scientia Sinica (Terrae), 2012, 42(7): 1104-1112.]
[14] 李瑞青, 吕世华, 韩博, 等. 青藏高原东部三种再分析资料与地面气温观测资料的对比分析[J]. 高原气象, 2012, 31(6): 1488-1502.
  [Li Ruiqing, Lv Shihua, Han Bo, et al. Preliminary comparison and analyses of air temperature at 2 m height between three analysis data-sets and observation in the east of Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2012, 31(6): 1488-1502.]
[15] 李明星. 小型开路式激光气体分析仪研制及涡动相关通量观测应用[D]. 合肥: 中国科学技术大学, 2021: 11-13.
  [Li Mingxing. Development of an Open-path Laser Gas Analyzer for Eddy Covariance Flux Measurement[D]. Hefei: University of Science and Technology of China, 2021: 11-13.]
[16] 郑汇璇, 胡泽勇, 孙根厚, 等. 那曲高寒草地总体输送系数及地面热源特征[J]. 高原气象, 2019, 38(3): 497-506.
  [Zheng Huixuan, Hu Zeyong, Sun Genhou, et al. The bulk transfer coefficient and characteristics of ground heat source on alpine grassland at Naqu[J]. Plateau Meteorology, 2019, 38(3): 497-506.]
[17] 严晓强, 胡泽勇, 孙根厚, 等. 那曲高寒草地上四种地表通量计算方法的对比[J]. 高原气象, 2018, 37(2): 358-370.
  [Yan Xiaoqiang, Hu Zeyong, Sun Genhou, et al. Comparison of four methods for calculating surface fluxes on alpine grassland at Naqu[J]. Plateau Meteorology, 2018, 37(2): 358-370.]
[18] 刘元波, 邱国玉, 张宏昇, 等. 陆域蒸散的测算理论方法: 回顾与展望[J]. 中国科学: 地球科学, 2022, 52(3): 381-399.
  [Liu Yuanbo, Qiu Guoyu, Zhang Hongsheng, et al. Shifting from homogeneous to heterogeneous surfaces in estimating terrestrial evapotranspiration: Review and perspectives[J]. Scientia Sinica (Terrae), 2022, 52(3): 381-399.]
[19] Wei Wang, Wei Xiao, Chang Cao, et al. Temporal and spatial variations in radiation and energy balance across a large freshwater lake in China[J]. Journal of Hydrology, 2014, 511: 811-824.
[20] Zhao Xiaosong, Liu Yuanbo. Phase transition of surface energy exchange in China largest freshwater lake[J]. Agricultural and Forest Meteorology, 2017, 244-245: 98-110.
[21] 孙宽, 孙雪岩, 唐艳, 等. 青海省多年地表感热通量的时空变化特征[J]. 干旱区研究, 2024, 41(1): 36-49.
  [Sun Kuan, Sun Xueyan, Tang Yan, et al. Characteristics of spatio-temporal variation of surface sensible heat fluxes in Qinghai Province[J]. Arid Zone Research, 2024, 41(1): 36-49.]
[22] 韩熠哲, 马伟强, 马耀明, 等. 南亚夏季风爆发前后青藏高原地表热通量的长期变化特征分析[J]. 气象学报, 2018, 76(6): 920-929.
  [Han Yizhe, Ma Weiqiang, Ma Yaoming, et al. Long-term variation characteristics of surface heat flux over the Tibetan Plateau before and after onset of the South Asian summer monsoon[J]. Acta Meterrological Sinica, 2018, 76(6): 920-929.]
[23] 马耀明, 姚檀栋, 王介民, 等. 青藏高原复杂地表能量通量研究[J]. 地球科学进展, 2006, 21(12): 1215-1223.
  [Ma Yaoming, Yao Tandong, Wang Jiemin, et al. The study on the land surface heat fluxes over heterogeneous landscape of the Tibetan Plateau[J]. Advance in Earth Science, 2006, 21(12): 1215-1223.]
[24] 葛楠. 青藏高原逐时地表水热通量物理过程模型估算研究[D]. 合肥: 中国科学技术大学, 2023: 57-62.
  [Ge Nan. Estimation of Hourly Surface Water and Heat fluxes over the Tibetan Plateau Based on Physical Process Models[D]. Hefei: University of Science and Technology of China, 2023: 57-62.]
[25] 张瑞, 王迎春, 张亦洲, 等. 基于最大熵增模型对京津冀地表通量的估算与评估[J]. 气象学报, 2023, 81(3): 492-505.
  [Zhang Rui, Wang Yingchun, Zhang Yizhou, et al. Estimation of land surface heat fluxes in the Beijing-Tianjin-Hebei region using a maximum entropy production model[J]. Acta Meteorologica Sinica, 2023, 81(3): 492-505.]
[26] 胡媛媛, 仲雷, 马耀明, 等. 青藏高原典型下垫面地表能量通量的模型估算与验证[J]. 高原气象, 2018, 37(6): 1499-1510.
  [Hu Yuanyuan, Zhong Lei, Ma Yaoming, et al. Model estimation and validation of the surface energy fluxes at typical underlying surfaces over the Qinghai-Tibetan Plateau[J]. Plateau Meteorology, 2018, 37(6): 1499-1510.]
[27] 叶晶, 彭丽春, 廖倩, 等. 利用MODIS数据估算晴空半干旱地表潜热通量[J]. 北京大学学报(自然科学版), 2014, 50(5): 835-842.
  [Ye Jing, Peng Lichun, Liao Qian, et al. Estimation of latent heat flux over semiarid areas for clear sky days using MODIS data[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(5): 835-842.]
[28] 刘凯露, 王远弘, 买买提艾力·买买提依明, 等. 基于FTIR野外实测的沙漠下垫面地表发射率数据集[J]. 湖北农业科学, 2021, 60(24): 197-202.
  [Liu Kailu, Wang Yuanhong, Maimaitiaili Maimaitiyiming, et al. Land surface emissivity dataset of desert underlying surface in arid area based on FTIR measurement[J]. Hubei Agricultural Sciences, 2021, 60(24): 197-202.]
[29] 冯晓刚, 赵毅, 李萌, 等. 城市河道及周临用地对地表热环境的影响研究[J]. 自然资源遥感, 2023, 35(3): 264-273.
  [Feng Xiaogang, Zhao Yi, Li Meng, et al. Influence of urban rivers and their surrounding land on the surface thermal environment[J]. Remote Sensing for Nature Resources, 2023, 35(3): 264-273.]
文章导航

/