水土资源

基于GRACE/GRACE-FO的黄河流域水储量及干旱特征研究

  • 栾奎峰 ,
  • 薛家盛 ,
  • 冯贵平 ,
  • 胡健聪 ,
  • 管志豪 ,
  • 朱卫东 ,
  • 元建胜
展开
  • 1.上海海洋大学海洋科学与生态环境学院,上海 201306
    2.上海河口海洋测绘工程技术研究中心,上海 201306
栾奎峰(1981-),男,副教授,主要从事海洋遥感与观测研究. E-mail: kfluan@shou.edu.cn
冯贵平. E-mail: gpfeng@shou.edu.cn

收稿日期: 2024-07-10

  修回日期: 2024-12-18

  网络出版日期: 2025-02-21

基金资助

轻小型光子激光雷达海岛礁及浅海水深高精度测量关键技术研究(42371441)

Drought characteristics of terrestrial water storage in the Yellow River Basin based on GRACE/GRACE-FO

  • LUAN Kuifeng ,
  • XUE Jiasheng ,
  • FENG Guiping ,
  • HU Jiancong ,
  • GUAN Zhihao ,
  • ZHU Weidong ,
  • YUAN Jiansheng
Expand
  • 1. College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
    2. Shanghai Estuary Marine Surveying and Mapping Engineering Technology Research Center, Shanghai 201306, China

Received date: 2024-07-10

  Revised date: 2024-12-18

  Online published: 2025-02-21

摘要

基于GRACE和GRACE-FO重力卫星数据反演2002—2022年黄河流域陆地水储量,并计算标准化水储量赤字干旱指数(Water Storage Deficit Index,WSDI),分析了2002—2022年黄河流域的干旱特征。结果表明:在2002—2022年期间,黄河流域全域、上游和中下游陆地水储量的长期减少趋势约为5.43 mm·a-1、1.03 mm·a-1和8.36 mm·a-1。在2002—2022年间,黄河流域全域、上游和中下游分别发生干旱事件6次、11次和8次。在干旱强度上,黄河流域上游多见中度及以上干旱,中下游多见轻度干旱,全域多见轻度干旱。2022年黄河流域干旱事件集中发生在上游和中下游交界处,黄河流域上游是干旱事件主要发生区域,除黄河源区外,全年均处于干旱状态;黄河流域上游和中下游交界处的内流河流域和汾河流域干旱现象明显;黄河流域下游仅有少数月份受干旱影响。在2022年内,干旱事件中心从前套流域逐步迁移到西套流域。

本文引用格式

栾奎峰 , 薛家盛 , 冯贵平 , 胡健聪 , 管志豪 , 朱卫东 , 元建胜 . 基于GRACE/GRACE-FO的黄河流域水储量及干旱特征研究[J]. 干旱区研究, 2025 , 42(2) : 246 -257 . DOI: 10.13866/j.azr.2025.02.06

Abstract

This study used GRACE and GRACE-FO gravity satellite data to invert the Terrestrial Water Storage reserves in the Yellow River Basin from 2002 to 2022. We also calculated the standardized Water Storage Deficit Index to analyze the drought characteristics of the Yellow River Basin from 2002 to 2022. From 2002 to 2022, the Terrestrial Water Storage in the entire Yellow River Basin, upstream, and middle lower reaches was about 5.43 mm·a-1, 1.03 mm·a-1, and 8.36 mm·a-1, respectively. Between 2002 and 2022, six drought events occurred in the entire Yellow River Basin, eleven in the upper reaches and eight in the middle and lower reaches. Regarding the drought intensity, moderate and extreme droughts were more common in the upper reaches of the Yellow River, mild drought was more common in the middle and lower reaches, and mild drought was more common in the entire region, with the strongest event being severe drought. The drought events in the Yellow River Basin in 2022 were concentrated at the junction of the upper and middle lower reaches. Drought events mainly occurred in the upper reaches of the Yellow River Basin; the area is in a drought state throughout the year, except for the Yellow River source area. The drought phenomenon is evident in the Inland River Basin and Fen River Basin at the junction of the middle and lower reaches of the Yellow River Basin; only a few months in the lower reaches of the Yellow River Basin are affected by drought. In 2022, the center of the drought events gradually shifted from the Qiantao Basin to the Xitao Basin.

参考文献

[1] Wang Fei, Wang Zongmin, Yang Haibo, et al. Study of the temporal and spatial patterns of drought in the Yellow River Basin based on SPEI[J]. Science China, 2018, 61: 1098-1111.
[2] 李万寿, 吴国祥. 黄河源头断流现象成因分析[J]. 水土保持通报, 2000, 20(1): 5-8.
  [Li Wanshou, Wu Guoxiang. Analysis on cause of flow-stopping in source area of the Yellow River[J]. Bulletin of Soil and Water Conservation, 2000, 20(1): 5-8. ]
[3] 王作亮, 文军, 李振朝, 等. 典型干旱指数在黄河源区的适宜性评估[J]. 农业工程学报, 2019, 35(21): 186-195.
  [Wang Zuoliang, Wen Jun, Li Zhenchao, et al. Evaluation of suitability using typical drought index in source region of the Yellow River[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(21): 186-195. ]
[4] 谢小伟, 幸茂仁, 汪璐璐, 等. 利用GRACE/GRACE-FO重力卫星探测黄河流域水储量能力及极端气候发生的可能性[J]. 大地测量与地球动力学, 2022, 42(12): 1269-1275.
  [Xie Xiaowei, Xing Maoren, Wang Lulu, et al. Using GRACE/GRACE-FO gravity satellite to detect the water storage capacity and the possibility of extreme climate in the Yellow River Basin[J]. Journal of Geodesy and Geodynamics, 2022, 42(12): 1269-1275. ]
[5] 张建云, 王国庆, 贺瑞敏, 等. 黄河中游水文变化趋势及其对气候变化的响应[J]. 水科学进展, 2009, 20(2): 153-158.
  [Zhang Jianyun, Wang Guoqing, He Ruimin, et al. Variation trends of runoffs in the middle Yellow River Basin and its response to climate change[J]. Advances in Water Science, 2009, 20(2): 153-158. ]
[6] 任保平, 张倩. 黄河流域高质量发展的战略设计及其支撑体系构建[J]. 改革, 2019(10): 26-34.
  [Ren Baoping, Zhang Qian. The strategic design and supporting system construction of high-quality development in the Yellow River Basin[J]. Reform, 2019(10):26-34. ]
[7] 杨庆, 李明星, 郑子彦, 等. 7种气象干旱指数的中国区域适应性[J]. 中国科学: 地球科学, 2017, 47(3): 337-353.
  [Yang Qing, Li Mingxing, Zheng Ziyan, et al. Regional adaptability of seven meteorological drought indices in China[J]. Scientia Sinica: Terrae, 2017, 47(3): 337-353. ]
[8] Mckee T B, Doesken N J, Kleist J. The relationship of drought frequency and duration to time scales[J]. Proceedings of the 8th Conference on Applied Climatology. Boston: American Meteorological Society, 1993, 17(22): 179-183.
[9] Hulme M, Marsh R, Jones P. Global changes in a humidity index between 1931-1960 and 1961-1990[J]. Climate Research, 1992, 2(1): 1-22.
[10] Vicente-Serrano S M, Beguería Santiago, López-Moreno Juan I. A multi-scalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index[J]. Journal of Climate, 2010, 23(7): 1696-1718.
[11] Tapley B D. Gravity model determination from the GRACE mission[J]. Journal of the Astronautical Sciences, 2008, 56: 273-285.
[12] Han S. Efficient determination of global gravity field from satellite-to-satellite tracking mission[J]. Celestial Mechanics and Dynamical Astronomy, 2004, 88(1): 69-102.
[13] Yirdaw S Z, Snelgrove K R, Agboma C O. GRACE satellite observations of terrestrial moisture changes for drought characterization in the Canadian Prairie[J]. Journal of Hydrology, 2008, 356: 84-92.
[14] Li B, Rodell M, Zaitchik B F, et al. Assimilation of GRACE terrestrial water storage into a land surface model: Evaluation and potential value for drought monitoring in western and central Europe[J]. Journal of Hydrology, 2012, 446(13): 103-115.
[15] 阚增辉. 基于GRACE卫星的中国区域陆地水储量变化及干旱特征研究[D]. 上海: 华东师范大学, 2017.
  [Kan Zenghui. Study on the Characteristics of Regional Terrestrial Water Storage and Drought in China Based on GRACE Satellite[D]. Shanghai: East China Normal University, 2017. ]
[16] 胡鹏飞, 李净, 张彦丽, 等. 黄土高原水储量的时空变化及影响因素[J]. 遥感技术与应用, 2019, 34(1): 176-186.
  [Hu Pengfei, Li Jing, Zhang Yanli, et al. Temporal and spatial variation and influencing factors of water storage on the Loess Plateau[J]. Remote Sensing Technology and Application, 2019, 34(1): 176-186. ]
[17] 晋泽辉. 基于GRACE/GRACE-FO重力卫星的黄河流域蒸散发和干旱演化特征研究[D]. 西安: 长安大学, 2023.
  [Jin Zehui. Evolution Characteristics of Evapotranspiration and Drought in the Yellow River Basin Based on GRACE/GRACE-FO Gravity Satellite[D]. Xi’an: Chang’an University, 2023. ]
[18] Jekeli C. Alternative Methods to Smooth the Earth’s Gravity Field[R]. Columbus: The Ohio State University, 1981.
[19] Bettadpur S. UTCSR Level-2 Gravity Field Product User Handbook[D]. Austin:The Universtiy of Texasat at Austin, 2007.
[20] Swenson S, Chambers D, Wahr J. Estimating geocenter variations from a combination of GRACE and ocean model output[J]. Journal of Geophysical Research: Solid Earth, 2008, 113(8): B08410.
[21] Cheng M, Tapley B D. Variations in the earth’s oblateness during the past 28 years[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(9): B09402.
[22] Wahr J, Zhong S. Computations of the viscoelastic response of a 3-D compressible earth to surface loading: An application to glacial isostatic adjustment in Antarctica and Canada[J]. Geophysical Journal International, 2013, 192(2): 557-572.
[23] Swenson S, Wahr J. Post-processing removal of correlated errors in GRACE data[J]. Geophysical Research Letters, 2006, 33(8): L08402.
[24] Beaudoing H, Rodell M, NASA/GSFC/HSL. GLDAS Noah Land Surface Model L4 monthly 0.25×0.25 degree V2.1[DB/OL]. https://hydro1.gesdisc.eosdis.nasa.gov/data/GLDAS/GLDAS_NOAH10_M.2.1/, , 2023-03-20.
[25] Houser P R, Rodell M, Jambor U, et al. The global land data assimilation system[J]. AGU Spring Meeting Abstracts, 2001, 11: 11-13.
[26] Wang G, Pan J, Shen C, et al. Evaluation of evapotranspiration estimates in the Yellow River Basin against the water balance method[J]. Water, 2018, 10(12): 1884-1902.
[27] 尼胜楠, 陈剑利, 李进, 等. 利用GRACE卫星时变重力场监测长江、黄河流域水储量变化[J]. 大地测量与地球动力学, 2014, 34(4): 49-55.
  [Ni Shengnan, Chen Jianli, Li Jin, et al. Terrestrial water storage change in the Yangtze and Yellow River Basins from GRACE time-variable gravity measurements[J]. Journal of Geodesy and Geodynamics, 2014, 34(4): 49-55. ]
[28] Ferreira V, Gong Z, He X, et al. Estimating total discharge in the Yangtze River Basin using satellite-based observations[J]. Remote Sensing, 2013, 5(7): 3415-3430.
[29] Long D, Longuevergne L, Scanlon B R. Uncertainty in evapotranspiration from land surface modeling, remote sensing, and GRACE satellites[J]. Water Resources Research, 2014, 50(2): 1131-1151.
[30] Mu?oz Sabater J. ERA5-Land monthly averaged data from 1950 to present[DB/OL]. https://cds.climate.copernicus.eu/datasets/reanalysis-era5-land-monthly-means?tab=overview, 2024-11-06.
[31] Wells N, Goddard S, Hayes M J. A self-calibrating Palmer Drought Severity Index[J]. Journal of Climate, 2004, 17(12): 2335-2351.
[32] Schrier G V D, Barichivich J, Briffa K R, et al. A scPDSI-based global data set of dry and wet spells for 1901-2009[J]. Journal of Geophysical Research Atmospheres, 2013, 118(10): 4025-4048.
[33] Barichivich J, Osborn T, Harris I, et al. Drought: Monitoring global drought using the self-calibrating Palmer Drought Severity Index[J]. Environmental Science, 2023, 104: 66-67.
[34] Vicente-Serrano S M, Santiago Beguería, Lorenzo-Lacruz J, et al. Performance of drought indices for ecological, agricultural, and hydrological applications[J]. Earth Interactions, 2012, 16(10): 1-27.
[35] 邓梓锋, 吴旭树, 王兆礼, 等. 基于GRACE重力卫星数据的珠江流域干旱监测[J]. 农业工程学报, 2020, 36(20): 179-187.
  [Deng Zifeng, Wu Xushu, Wang Zhaoli, et al. Drought monitoring based on GRACE data in the Pearl River Basin[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(20): 179-187. ]
[36] 刘婷婷, 朱秀芳, 郭锐, 等. ERA5再分析降水数据在中国的适用性分析[J]. 干旱区地理, 2022, 45(1): 66-79.
  [Liu Tingting, Zhu Xiufang, Guo Rui, et al. Applicability of ERA5 reanalysis of precipitation data in China[J]. Arid Land Geography, 2022, 45(1): 66-79. ]
[37] 张昊, 丁洁, 朱仟, 等. 基于GRACE的华北平原地下水干旱时空特征分析[J]. 人民长江, 2021, 52(10): 107-114.
  [Zhang Hao, Ding Jie, Zhu Qian, et al. Analysis on spatial-temporal characteristic of groundwater drought based on GRACE in North China Plain[J]. Yangtze River, 2021, 52(10): 107-114. ]
[38] 阮永健, 吴秀芹. 基于GRACE和GLDAS的西北干旱区地下水资源量可持续性评价[J]. 干旱区研究, 2022, 39(3): 787-800.
  [Ruan Yongjian, Wu Xiuqin. Evaluation of groundwater resource sustainability based on GRACE and GLDAS in arid region of Northwest China[J]. Arid Zone Research, 2022, 39(3): 787-800. ]
[39] 刘玉针, 魏长寿, 李志进. 1961—2020年黄河流域干旱演变分析和大气响应[J]. 水资源开发与管理, 2022, 8(10): 7-17.
  [Liu Yuzhen, Wei Changshou, Li Zhijin. Analysis of drought evolution and atmospheric response in the Yellow River Basin from 1961 to 2020[J]. Water Resoures Development and Managment, 2022, 8(10): 7-17. ]
文章导航

/