农业生态

新疆耕地利用碳源/汇效应时空演变特征及其贡献因子

  • 吕宁 ,
  • 国语 ,
  • 彭琴 ,
  • 尹飞虎 ,
  • 张嘉淇 ,
  • 刘杏认 ,
  • 曾梅 ,
  • 许子函
展开
  • 1.新疆农垦科学院,农业农村部西北绿洲节水农业重点实验室,新疆 石河子 832000
    2.中国科学院地理科学与资源研究所,陆地表层格局与模拟重点实验室,北京 100101
    3.中国农业科学院,农业环境与可持续发展研究所,北京 100081
    4.北京林业大学,北京 100083
吕宁(1985-),女,副研究员,从事干旱区农业资源与农田生态环境研究. E-mail: lvning20030118@163.com
彭琴. E-mail: pengqin@igsnrr.ac.cn

收稿日期: 2024-07-08

  修回日期: 2024-11-11

  网络出版日期: 2025-01-17

基金资助

新疆兵团科技创新人才计划(2022CB028);国家重点研发计划资助(2022YFD1900405-3);第三次新疆综合科学考察项目(2022xjkk1002);国家自然科学基金(42177224);国家自然科学基金(42277241);中国工程院战略研究与咨询项目(2023-XY-34);新疆兵团英才支持计划(2022)

Spatiotemporal evolution characteristics and contributing factors of the carbon effect in cultivated land use in Xinjiang

  • LYU Ning ,
  • GUO Yu ,
  • PENG Qin ,
  • YIN Feihu ,
  • ZHANG Jiaqi ,
  • LIU Xingren ,
  • ZENG Mei ,
  • XU Zihan
Expand
  • 1. Key Laboratory of North-west Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, Xinjiang, China
    2. Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    3. Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Beijing 100081, China
    4. Beijing Forestry University, Beijing 100083, China

Received date: 2024-07-08

  Revised date: 2024-11-11

  Online published: 2025-01-17

摘要

为探明新疆耕地利用碳效应的长周期时空变化特征,准确评估其固碳增汇潜力,本文通过收集1991—2021年的新疆农业数据,采用碳吸收和排放系数法,测度分析新疆耕地利用过程碳排放量、碳吸收量、碳汇量的时序动态,并利用莫兰指数、标准差椭圆和重心迁移分析耕地碳效应的空间分异、自相关性和演变特征,并揭示了其主要贡献因子。结果表明:(1) 新疆耕地的碳吸收量远超碳排放量,总体表现为强的碳汇效应,且随时间推移碳汇能力呈增强态势,由1991年的830×104 t增长至2021年的3429×104 t。(2) 强碳汇区域主要分布在耕地面积大且以种植玉米、小麦、棉花为主的生产区。(3) 在县域尺度上耕地净碳汇具有显著的空间集聚特征,过去30 a耕地碳汇的重心总体上呈现由西南向东北迁移趋势,但仍集中于南疆的阿克苏地区。(4) 施用化肥、机械作业、灌溉和农膜是主要的碳排放来源,其中,化肥和农膜投入对耕地碳排放贡献呈增加趋势。基于以上研究结果,提出可通过适度增加耕地面积、扩大南疆棉花和粮油作物种植布局、因地制宜推广麦后复播玉米、大豆、棉花提高复种指数、加大绿色农资物品投入等措施,在提高耕地产能保障粮食安全的同时,增强新疆耕地利用的碳汇效应。

本文引用格式

吕宁 , 国语 , 彭琴 , 尹飞虎 , 张嘉淇 , 刘杏认 , 曾梅 , 许子函 . 新疆耕地利用碳源/汇效应时空演变特征及其贡献因子[J]. 干旱区研究, 2025 , 42(1) : 179 -190 . DOI: 10.13866/j.azr.2025.01.16

Abstract

Using agricultural data from Xinjiang from 1991 to 2021, this study examined the temporal variations in carbon effects induced by cultivation in the region by using the carbon absorption and emission coefficient method. The spatial correlation, distribution, and evolution patterns of these carbon effects were explored by integrating Moran’s I, centroid migration, and the standard deviational elliptical model. The aim of this paper was to investigate the spatiotemporal dynamics of carbon effect changes in cultivated land over a long-term series in Xinjiang and to assess the region’s potential for carbon sequestration. The results were as follows: (1) Carbon absorption in Xinjiang’s cultivated land significantly exceeded carbon emissions, demonstrating a net carbon sink effect. Furthermore, the carbon sink capacity had consistently increased, rising from 8.3 million tons in 1991 to 34.29 million tons in 2021. (2) Regions with strong carbon sink capacity were concentrated in areas with extensive cultivated land and high production of corn, wheat, and cotton. (3) The net carbon sink of cultivated land exhibits significant spatial agglomeration patterns at the county and city scales, with the center of gravity of cropland carbon sinks generally migrating to the northeast. However, over the past 30 years, it has remained situated in the Aksu region of southern Xinjiang. (4) Cropland carbon sinks are primarily attributed to carbon absorption by cotton, wheat, and corn. Conversely, the main sources of carbon emissions include the application of chemical fertilizers, farmland tillage, irrigation, and the use of agricultural films. Notably, the contribution of chemical fertilizers and agricultural films to carbon emissions is on the rise. Based on these findings, we propose an appropriate expansion of the cultivated land area and increasing the cultivation of cotton, as well as grain and oil crops in southern Xinjiang. Additionally, we should promote the planting of corn and cotton in accordance with local conditions and boost the investment in green agricultural technologies and materials to improve the production capacity of cultivated land, ensure food security, and enhance carbon sequestration.

参考文献

[1] Nayak D, Saetnant E, Cheng K, et al. Management opportunities to mitigate greenhouse gas emissions from Chinese agriculture[J]. Agriculutre, Ecosystems and Environment, 2015, 209: 108-124.
[2] 赵明月, 刘源鑫, 张雪艳. 农田生态系统碳汇研究进展[J]. 生态学报, 2022, 42(23): 9405-9416.
  [Zhao Mingyue, Liu Yuanxin, Zhang Xueyan. A review of research advances on carbon sinks in farmland ecosystems[J]. Acta Ecologica Sinica, 2022, 42(23): 9405-9416. ]
[3] Black J C C. Photosynthetic carbon fixation in relation to net CO2uptake[J]. Annual Review of Plant Physiology, 1973, 24(1): 253-286.
[4] 宋艳华, 王自威, 袁晨光, 等. 河南省耕地质量变化对农田固碳能力的影响[J]. 地域研究与开发, 2023, 42(4): 143-148, 180.
  [Song Yanhua, Wang Ziwei, Yuan Chenguang, et al. Study on influence of cultivated land quality change on carbon sequestration capacity of farmland ecosystem in Henan Province[J]. Aeral Research Aan Development, 2023, 42(4): 143-148, 180. ]
[5] Quiggin J. Agriculture and global climate stabilization: A public good analysis[J]. Agricultural Economics, 2010, 41: 121-132.
[6] Li M Q, Liu S L, Sun Y X, et al. Agriculture and animal husbandry increased carbon footprint on the Qinghai-Tibet Plateau during past three decades[J]. Journal of Cleaner Production, 2021, 278: 123963.
[7] 方精云. 碳中和的生态学透视[J]. 植物生态学报, 2021, 45(11): 1173-1176.
  [Fang Jingyun. Ecological perspectives of carbon neutrality[J]. Chinese Journal of Plant Ecology, 2021, 45(11): 1173-1176. ]
[8] Jiang F, Chen J M, Zhou L, et al. A comprehensive estimate of recent carbon sinks in China using both top-down and bottom-up approaches[J]. Scientific Reports, 2016, 6(1): 22130.
[9] 包佳玉, 李祥龙, 胡启文, 等. 新疆能源消费碳排放时空特征及能源结构调整路径探讨[J]. 干旱区研究, 2024, 41(3): 490-498.
  [Bao Jiayu, Li Xianglong, Hu Qiwen, et al. Spatiotemporal characteristics of carbon emissions from energy consumption and the approach to energy structure adjustment in Xinjiang[J]. Arid Zone Research, 2024, 41(3): 490-498. ]
[10] 宋梅, 时佳. 新疆碳排放估算及其特征分析[J]. 干旱区研究, 2014, 31(1): 188-191.
  [Song Mei, Shi Jia. Estimation of carbon dioxide emission in Xinjiang[J]. Arid Zone Research, 2014, 31(1): 188-191. ]
[11] 唐洪松, 马惠兰, 苏洋, 等. 新疆不同土地利用类型的碳排放与碳吸收[J]. 干旱区研究, 2016, 33(3): 486-492.
  [Tang Hongsong, Ma Huilan, Su Yang, et al. Carbon emissions and carbon absorptions of different land use types in Xinjiang[J]. Arid Zone Research, 2016, 33(3): 486-492. ]
[12] 苏洋, 马惠兰, 颜璐. 新疆农地利用碳排放时空差异及驱动机理研究[J]. 干旱区地理, 2013, 36(6): 1162-1169.
  [Su Yang, Ma Huilan, Yan Lu. Spatial-temporal differences and driving mechanism of agricultural land use carbon emission in Xinjiang[J]. Arid Land Geography, 2013, 36(6): 1162-1169. ]
[13] 苏洋, 马惠兰, 李凤. 新疆农牧业碳排放及其与农业经济增长的脱钩关系研究[J]. 干旱区地理, 2014, 37(5): 1047-1054.
  [Su Yang, Ma Huilan, Li Feng. Xinjiang agriculture and animal husbandry carbon emissions and its decoupling relationship with agricultural economic growth[J]. Arid Land Geography, 2014, 37(5): 1047-1054. ]
[14] 冉锦成, 苏洋, 胡金凤, 等. 新疆农业碳排放时空特征、峰值预测及影响因素研究[J]. 中国农业资源与区划, 2017, 38(8): 16-24.
  [Ran Jincheng, Su Yang, Hu Jinfeng, et al. Temporal and spatial characteristics, peak value forecast and influencing factors of agricultural carbon emissions in Xinjiang[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2017, 38(8): 16-24. ]
[15] 田云, 张俊飚, 尹朝静, 等. 中国农业碳排放分布动态与趋势演进——基于31个省(市、区)2002—2011年的面板数据分析[J]. 中国人口·资源与环境, 2014, 24(7): 91-98.
  [Tian Yun, Zhang Junbiao, Yin Chaojing, et al. Distributional dynamics and trend evolution of China’s agricultural carbon emissions——An analysis on panel data of 31 provinces from 2002 to 2011[J]. China Population Resources and Environment, 2014, 24(7): 91-98. ]
[16] 冉锦成, 马惠兰, 苏洋. 西北五省农业碳排放测算及碳减排潜力研究[J]. 江西农业大学学报, 2017, 39(3): 623-632.
  [Ran Jincheng, Ma Huilan, Su Yang. A study on agricultural carbon emission and carbon emission reduction potential in five provinces in Northwest China[J]. Acta Agriculturae Universitatis Jiangxiensis, 2017, 39(3): 623-632. ]
[17] Chen L, Zhou G X, Feng B, et al. Saline-alkali land reclamation boosts topsoil carbon storage by preferentially accumulating plant-derived carbon[J]. Science Bulletin, 2024, 69(10): 2948-2958.
[18] Qin J X, Duan W L, Zou S, et al. Global energy use and carbon emissions from irrigated agriculture[J]. Nature Communications, 2024, 15: 3084.
[19] Zhang J Q, Yong H, Lv N. Balancing productivity and sustainability: insights into cultivated land use efficiency in arid region of Northwest China[J]. Journal of the Knowledge Economy, 2024, 15: 13828-13856.
[20] 张晓华, 张元敏, 焦马倩, 等. 耕地净碳汇时空差异分析[J]. 安徽农学通报, 2023, 29(22): 99-104.
  [Zhang Xiaohua, Zhang Yuanmin, Jiao Maqian, et al. Analysis of spatial and temporal differences of net carbon sink of cultivated land[J]. Anhui Agricultural Science Bulletin, 2023, 29(22): 99-104. ]
[21] 李波, 张俊飚. 我国农作物碳汇的阶段特征与空间差异研究[J]. 湖北农业科学, 2013, 52(5): 1229-1233.
  [Li Bo, Zhang Junbiao. Study on characteristics and spatial differences of Chinese agricultural carbon sinks[J]. Hubei Agricultural Sciences, 2013, 52(5): 1229-1233. ]
[22] 马嘉艺. 耕地利用碳效应的时空动态、驱动因素及减排潜力研究[D]. 杭州: 浙江大学, 2023.
  [Ma Jiayi. The Spatiotemporal Dynamics, Drivers and Emission Reduction Potential of The Carbon Effect of Cultivated Land Use[D]. Hangzhou: Zhejiang University, 2023. ]
[23] 吴昊玥, 孟越, 黄瀚蛟, 等. 中国耕地利用净碳汇与农业生产的时空耦合特征[J]. 水土保持学报, 2022, 36(5): 360-376.
  [Wu Haoyue, Meng Yue, Huang Hanjiao, et al. Spatiotemporal coupling between the net carbon sequestration of cropland use and agricultural production in China[J]. Journal of Soil and Water Conservation, 2022, 36(5): 360-376. ]
[24] West T O, Marland G. Net carbon flux from agricultural ecosystems: Methodology for full carbon cycle analyses[J]. Environment Pollution, 2002, 116: 439-444.
[25] Post W M, Kwon K C. Soil Carbon sequestration and land-use change: Processes and potential[J]. Global Change Biology, 2000, 6(3): 317-327.
[26] 段华平, 张悦, 赵建波, 等. 中国农田生态系统的碳足迹分析[J]. 水土保持学报, 2011, 25(5): 203-208.
  [Duan Huaping, Zhang Yue, Zhao Jianbo, et al. Carbon footprint analysis of farmland ecosystem in China[J]. Journal of Soil and Water Conservation, 2011, 25(5): 203-208. ]
[27] 伍芬琳, 李琳, 张海林, 等. 保护性耕作对农田生态系统净碳释放量的影响[J]. 生态学杂志, 2007, 26(12): 2035-2039.
  [Wu Fenlin, Li Lin, Zhang Hailin, et al. Effect of conservation tillage on the net carbon release in farmland ecosystems[J]. Journal of Ecology, 2007, 26(12): 2035-2039. ]
[28] Moran P A P. Notes on continuous stochastic phenomen[J]. Biometrika, 1950, 37(1-2): 17-23.
[29] Anselin L. Local Indicators of Spatial Association—LISA[J]. Geographical Analysis, 1995, 27(2): 93-115.
[30] 李德仁, 余涵若, 李熙. 基于夜光遥感影像的“一带一路”沿线国家城市发展时空格局分析[J]. 武汉大学学报(信息科学版), 2017, 42(6): 711-720.
  [Li Deren, Yu Hanruo, Li Xi. The spatial-temporal pattern analysis of city development in countries along the belt and road initiative based on nighttime light data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(6): 711-720. ]
[31] 宋钰, 张全景, 翟腾腾, 等. 1980—2020年黄河流域生态用地时空格局及演变特征研究[J]. 资源开发与市场, 2024, 40(8): 1128-1139.
  [Song Yu, Zhang Quanjing, Zhai Tengteng, et al. Spatio-temporal pattern and evolutionary heterogeneity of ecological land in the Yellow River Basin during 1980-2020[J]. Resource Development and Market, 2024, 40(8): 1128-1139. ]
[32] Yin Y L, He K, Chen Z, et al. Agricultural green development to achieve food security and carbon reduction in the context of China’s dual carbon goals[J]. Frontiers of Agricultural Science and Engineering, 2023, 10(2): 262-267.
[33] He K, Wu S, Yang Y, et al. Dynamic changes of land use and oasis in Xinjiang in the last 40 years[J]. Arid Land Geography, 2018, 41: 1333-1340.
[34] Zhang H, Li D. Concept and classification of unstable farmland in arid area of Northwest China: A case study of Changji Prefecture, Xinjiang[J]. Geographical Research, 2021, 40: 597-612.
[35] 郭霞. 农用地生态价值估价方法研究[J]. 国土资源情报, 2006(3): 20-23, 34.
  [Guo Xia. Study on the assessment methods of ecological value of agricultural land[J]. Land and Resources Information, 2006(3): 20-23, 34. ]
[36] Mathew I, Shimelis H, Mutema M, et al. Crops for increasing soil organic carbon stock: A global meta analysis[J]. Geoderma, 2020, 367, 114230.
[37] 尹飞虎, 高志建, 谢宗铭, 等. 不同碳氮施肥组合对新疆滴灌棉田冠层CO2浓度、光合作用和产量的影响[J]. 干旱区研究, 2011, 28(4): 724-728.
  [Yin Feihu, Gao Zhijian, Xie Zongming, et al. Effects of different carbon and nitrogen fertilizer combination treatments on canopy CO2 concentration, photosynthesis and yield formation of cotton field under drip irrigation in Xinjiang[J]. Arid Zone Research, 2011, 28(4): 724-728. ]
[38] Qiang Chai, Thomas N, Chang L, et al. Integrated farming with intercropping increases food production while reducing environmental footprint[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(38): e2106382118.
[39] 苏浩, 李佳珂, 刘坤, 等. 山东省耕地利用净碳汇变化与耕地利用效益关系研究[J]. 地理科学, 2024, 44(5): 864-873.
  [Su Hao, Li Jiake, Liu Kun, et al. Relationship between net carbon sequestration change and cultivated land use benefit of cultivated land use in Shandong province[J]. Scientia Geographica Sinica, 2024, 44(5): 864-873. ]
[40] 李祥. 新疆耕地利用转型及驱动机制[D]. 石河子: 石河子大学, 2023.
  [Li Xiang. Transformation of Farmland Use and Driving Mechanism in Xinjiang[D]. Shihezi: Shihezi University, 2023. ]
[41] Zhou K, Yang J N, Yang T, et al. Spatial and temporal evolution characteristics and spillover effects of China’s regional carbon emissions[J]. Journal of Environmental Management, 2024, 325: 116423.
文章导航

/