生态与环境

气候和采矿活动对荒漠化草原露天矿区植被的影响

  • 王市委 ,
  • 张浩斌 ,
  • 郭文兵 ,
  • 马超
展开
  • 1.河南理工大学测绘与国土信息工程学院,河南 焦作 454003
    2.河南理工大学能源科学与工程学院,河南 焦作 454003
    3.河南理工大学自然资源部矿山时空信息与生态修复重点实验室,河南 焦作 454003
    4.河南理工大学黄河流域耕地保护与城乡高质量发展研究中心,河南 焦作 454003
王市委(1998-),男,硕士研究生,主要从事生态环境遥感. E-mail: 212204020073@home.hpu.edu.cn
马超. E-mail: mac@hpu.edu.cn

收稿日期: 2024-03-18

  修回日期: 2024-06-25

  网络出版日期: 2024-11-29

基金资助

国家基金委区域创新发展联合基金重点项目(U21A20108);河南省高校科技创新团队支持计划(22IRTSTHN008)

Effects of climate and mining activities on vegetation in open-pit mining in desertification grassland

  • WANG Shiwei ,
  • ZHANG Haobin ,
  • GUO Wenbing ,
  • MA Chao
Expand
  • 1. School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454003, Henan, China
    2. School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, Henan, China
    3. Key Laboratory of Spatio-Temporal Information and Ecological Restoration of Mines (MNR), Henan Polytechnic University, Jiaozuo 454003, Henan, China
    4. Research Centre of Arable Land Protection and Urban-Rural High-Quality Development in Yellow River Basin, Henan Polytechnic University, Jiaozuo 454003, Henan, China

Received date: 2024-03-18

  Revised date: 2024-06-25

  Online published: 2024-11-29

摘要

研究露天矿采矿坑与排土场的植被破坏及复垦状况,可为矿区植被损伤诊断、植被自然恢复和人工修复评估提供生态学依据。基于Sentinel-2数据计算非红边植被指数(NDVI、EVI)和红边植被指数(RENDVI、MSR_RE、CIre、TCARI)为生态修复评价指标;采用回归分析、趋势分析和相关性分析方法,分析2018—2021年采矿活动和气候变化对5个露天矿(乌兰哈达露天矿、经纬露天矿、武家塔露天矿、狼窝渠露天矿和鸿盛源露天矿)植被长势的影响,获取矿区采矿坑、排土场和缓冲区植被的时空变化规律。结果表明:(1) 鸿盛源露天矿采矿坑植被受损程度最严重(拟合斜率k=-0.2996),但其排土场人工修复效果最好(拟合斜率k=0.1364)。(2) 对比5个露天煤矿5 km缓冲区,发现逐像元RENDVI变化趋势均以退化为主,退化面积均占50%以上。(3) 在荒漠化草原地区,植被NDVI变化受降水的影响小于气温。露天开采会加剧荒漠化草原植被的退化,排土场的人工修复对改善区域植被生长状况成效显著。

本文引用格式

王市委 , 张浩斌 , 郭文兵 , 马超 . 气候和采矿活动对荒漠化草原露天矿区植被的影响[J]. 干旱区研究, 2024 , 41(11) : 1921 -1935 . DOI: 10.13866/j.azr.2024.11.12

Abstract

In this study, we aimed to examine the vegetation damage and reclamation status of mining pits and waste dumps in open-pit mines and provide an ecological basis for diagnosing vegetation damage in mining areas and assessing natural and artificial vegetation restoration. Using Sentinel-2 data, we calculated non-red edge vegetation indices (Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index) and red edge vegetation indices (Red Edge Normalized Difference Vegetation Index (RENDVI), Modified Red Edge Simple Ratio, Chlorophyll Index red edge, and Transformed Chlorophyll Absorption in Reflectance Index) as indicators for evaluating ecological restoration. We employed regression analysis, trend analysis, and correlation analysis to assess the impacts of mining activities and climate change on the ecological environment of five open-pit mines (Wulanhada, Jingwei, Wujiata, Langwoqu, and Hongshengyuan) from 2018 to 2021. This approach enabled us to identify the spatial and temporal patterns of change in vegetation across mining pits, waste dumps, and buffer zones. The results revealed the following: (1) The Hongshengyuan open-pit mine had the most severe vegetation damage (k=-0.2996) but had the most effective manual restoration on its waste dump (k=0.1364). (2) A comparison of the 5 km buffer zones around the five open-pit mines indicated that the pixel-by-pixel RENDVI trends predominantly showed degradation, with over 50% of the areas exhibiting signs of decline. (3) In the desertified grassland area, temperature had a more significant impact on vegetation NDVI than temperature. Open-pit mining exacerbates the ecological degradation of desertified grassland vegetation, while artificial restoration of waste dumps is highly effective in improving the ecological conditions of regional vegetation

参考文献

[1] 董霁红, 吉莉, 房阿曼. 典型干旱半干旱草原矿区生态累积效应[J]. 煤炭学报, 2021, 46(6): 1945-1956.
  [Dong Jihong, Ji Li, Fang Aman. Ecological cumulative effect of mining area in typical arid and semi-arid grassland[J]. Journal of China Coal Society, 2021, 46(6): 1945-1956. ]
[2] Kong Z H, Stringer L, Paavola J, et al. Situating china in the global effort to combat desertification[J]. Land, 2021, 10(7): 702-724.
[3] 韩煜, 王琦, 赵伟, 等. 草原区露天煤矿开采对土壤性质和植物群落的影响[J]. 生态学杂志, 2019, 38(11): 3425-3433.
  [Han Yu, Wang Qi, Zhao Wei, et al. Effects of opencast coal mining on soil properties and plant communities of grassland[J]. Chinese Journal of Ecology, 2019, 38(11): 3425-3433. ]
[4] 毕银丽, 彭苏萍, 杜善周. 西部干旱半干旱露天煤矿生态重构技术难点及发展方向[J]. 煤炭学报, 2021, 46(5): 1355-1364.
  [Bi Yinli, Peng Suping, Du Shanzhou. Technological difficulties and future directions of ecological reconstruction in open pit coal mine of the arid and semi-arid areas of Western China[J]. Journal of China Coal Society, 2021, 46(5): 1355-1364. ]
[5] 张建华, 张琨, 刘勇, 等. 山西省露天煤矿复垦区典型人工林凋落物持水性能研究[J]. 干旱区研究, 2023, 40(12): 2043-2052.
  [Zhang Jianhua, Zhang Kun, Liu Yong, et al. Study on water-holding capacity of litters from typical artificial forests in reclaimed regions of the opencast coal mine in Shanxi Province[J]. Arid Zone Research, 2023, 40(12): 2043-2052. ]
[6] 胡振琪, 陈涛. 基于ERDAS的矿区植被覆盖度遥感信息提取研究——以陕西省榆林市神府煤矿区为例[J]. 西北林学院学报, 2008, 23(2): 164-167, 183.
  [Hu Zhenqi, Chen Tao. ERDAS aided exbraction of vegetation fraction from remote sensing information in coalmine area based—a case study of Shenfu coalmine[J]. Journal of Northwest Forestry University, 2008, 23(2): 164-167, 183. ]
[7] 吴立新, 马保东, 刘善军. 基于SPOT卫星NDVI数据的神东矿区植被覆盖动态变化分析[J]. 煤炭学报, 2009, 34(9): 1217-1222.
  [Wu Lixin, Ma Baodong, Liu Shanjun. Analysis to vegetation coverage change in Shendong mining area with SPOT NDVI data[J]. Journal of China Coal Society, 2009, 34(9): 1217-1222. ]
[8] 马保东, 陈绍杰, 吴立新, 等. 基于SPOT-VGT NDVI的矿区植被遥感监测方法[J]. 地理与地理信息科学, 2009, 25(1): 84-87.
  [Ma Baodong, Chen Shaojie, Wu Lixin, et al. Vegetation monitoring method in mining area based on SPOT-VGT NDVI[J]. Geography and Geo-information Science, 2009, 25(1): 84-87. ]
[9] Anupma Prakash, Rajender Gupta. Land-use mapping and change detection in a coal mining area: A case study in the Jharia coalfield, India[J]. International Journal of Remote Sensing, 1998, 19(3): 391-410.
[10] Karan S K, Samadder S R, Maiti S K. Assessment of the capability of remote sensing and GIS techniques for monitoring reclamation success in coal mine degraded lands[J], Journal of Environmental Management, 2016, 182(44): 272-283.
[11] 张耀, 周伟. 利用多时相遥感图像动态监测矿区植被覆盖变化——以山西省平朔露天煤矿为例[J]. 西北林学院学报, 2016, 31(4): 206-212, 251.
  [Zhang Yao, Zhou Wei. Monitoring of vegetation coverage by multi-temporal images: A case study of Pingshuo coal mine[J]. Journal of Northwest Forestry University, 2016, 31(4): 206-212, 251. ]
[12] Zhang M, Wang J M, Li S J. Tempo-spatial changes and main anthropogenic influence factors of vegetation fractional coverage in a large-scale opencast coal mine area from 1992 to 2015[J]. Journal of Cleaner Production, 2019, 232(27): 940-952.
[13] Erener A. Remote sensing of vegetation health for reclaimed areas of Seyit?mer open cast coal mine[J]. International Journal of Coal Geology, 2011, 86(1): 20-26.
[14] Hui J W, Bai Z K, Ye B Y, et al. Remote sensing monitoring and evaluation of vegetation restoration in grassland mining areas: A case study of the Shengli mining area in Xilinhot City, China[J]. Land, 2021, 10(7): 743-761.
[15] Wang H H, Xie M M, Li H T, et al. Monitoring ecosystem restoration of multiple surface coal mine sites in China via Landsat images on Google Earth Engine[J]. Land Degradation & Development, 2021, 32(10): 2936-2950.
[16] Zhu D Y, Chen T, Zhen N, et al. Monitoring the effects of open-pit mining on the eco-environment using a moving window-based remote sensing ecological index[J]. Environmental Science and Pollution Research International, 2020, 27(13): 15716-15728.
[17] 刘英, 胡霄, 岳辉, 等. 基于时间序列模型的戈壁荒漠露天矿生态环境评价[J]. 煤炭科学技术, 2023, 51(12): 125-139.
  [Liu Ying, Hu Xiao, Yue Hui, et al. Ecological environmental assessment of Gobi desert open-pit mine based on time series model[J]. Coal Science and Technology, 2023, 51(12): 125-139. ]
[18] Xiao W, Zhang W K, Ye Y M, et al. Is underground coal mining causing land degradation and significantly damaging ecosystems in semi‐arid areas: A study from an ecological capital perspective[J]. Land Degradation & Development, 2020, 31(15): 1969-1989.
[19] Wu Q Y, Xu H N, Yang Y J, et al. Identifying structure change of vegetation under long-term disturbance in the Shendong mining area[J]. Environmental Earth Sciences, 2023, 82(19): 450-468.
[20] 周甲男, 马苏, 郑颖娟, 等. 基于生态产品价值视角的矿区植被恢复成效评估: 以神东矿区为例[J]. 环境科学研究, 2023, 36(9): 1728-1736.
  [Zhou Jianan, Ma Su, Zhen Yingjuan, et al. Evaluation of vegetation restoration effect in mining area from the perspective of ecosystem product value: A case study of Shendong mining area[J]. Research of Environmental Sciences, 2023, 36(9): 1728-1736. ]
[21] 李晓婷, 杨丽帆, 邹友峰, 等. 采煤胁迫下干旱区植被生长周期红边指数动态变化[J]. 煤炭学报, 2021, 46(5): 1508-1520.
  [Li Xiaoting, Yang Lifan, Zou Youfeng, et al. Dynamic change of red edge vegetation index within a growth cycle in arid area under coal mining stress[J]. Journal of China Coal Society, 2021, 46(5): 1508-1520. ]
[22] 毕银丽, 刘涛. 露天矿区植被协同演变多源数据时序分析——以准格尔矿区为例[J]. 煤炭科学技术, 2022, 50(1): 293-302.
  [Bi Yinli, Liu Tao. Time series analysis of multi-source data of coordinated evolution of vegetation in open-pit mining area: Taking Jungar Mining Area as an exampl[J]. Coal Science and Technology, 2022, 50(1): 293-302. ]
[23] Lu J J, Miao Y X, Shi W, et al. Evaluating different approaches to non-destructive nitrogen status diagnosis of rice using portable RapidSCAN active canopy sensor[J]. Scientific Reports, 2017, 7(1): 14073-14083.
[24] Elsayed Salah, Pablo Rischbe, Schmidhalter Urs. Comparing the performance of active and passive reflectance sensors to assess the normalized relative canopy temperature and grain yield of drought-stressed barley cultivars[J]. Field Crops Research, 2015, 177(38): 148-160.
[25] Wu C Y, Niu Z, Tang Q, et al. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation[J]. Agricultural and Forest Meteorology, 2008, 148(8): 1230-1241.
[26] Gitelson A A, Gritz Y, Merzlyak M N. Relationships between leaf chlorophyll content and spectral reflectance and algo-rithms for non-destructive chlorophyll assessment in higher plant leaves[J]. Journal of Plant Physiology, 2003, 160(3): 271-282.
[27] Hunt E R, Daughtry C S T, Eitel J U H, et al. Remote sensing leaf chlorophyll content using a visible band index[J]. Agronomy Journal, 2011, 103(4): 1090-1099.
[28] Hird J N, Castilla G, Mcdermid G J, et al. A simple transformation for visualizing non-seasonal landscape change from dense time series of satellite data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(8): 3372-3383.
[29] 马超, 李晓婷, 项晓铭, 等. 浑善达克沙地腹地和边缘交错区NDVI演变对气候变化和人类活动的响应[J]. 资源科学, 2023, 45(1): 204-221.
  [Ma Chao, Li Xiaoting, Xiang Xiaoming, et al, Responses of NDVI evolution to climate change and human activities in the Hunshandake Sandy Land and its ecotones[J]. Resources Science, 2023, 45(1): 204-221. ]
[30] 王薇. 基于时序特征变化的矿山复绿遥感监测与评价[D]. 北京: 中国地质大学(北京), 2021.
  [Wang Wei. Remote Sensing Monitoring and Evaluation of Mine Regreening Based on Time Series Feature Change[D]. Beijing: China University of Geosciences Beijing, 2021. ]
[31] 李军, 彭传盈, 张成业, 等. 基于大样本的露天开采植被扰动范围一般性统计规律——以神东煤炭基地为例[J]. 煤炭学报, 2023, 48(2): 975-985.
  [Li Jun, Peng Chuanying, Zhang Chengye, et al. General statistical rules of vegetation disturbance range by open-pit mining based on a large sample: A case study of Shendong coal base[J]. Journal of China Coal Society, 2023, 48(2): 975-985. ]
[32] Zhang C Y, Zheng H Y, Li J, et al. A method for identifying the spatial range of mining disturbance based on contribution quantification and significance test[J]. International Journal of Environmental Research and Public Health, 2022, 19(9): 5176-5176.
[33] Sun X F, Yuan L G, Liu M, et al. Quantitative estimation for the impact of mining activities on vegetation phenology and identifying its controlling factors from Sentinel-2 time series[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 111(24): 102814-102827.
[34] Zheng K Y, Tan L S, Sun Y W, et al. Impacts of climate change and anthropogenic activities on vegetation change: Evidence from typical areas in China[J]. Ecological Indicators, 2021, 126(21): 107648-107662.
[35] Zhao D, Hou H P, Liu H Y, et al. Microbial community structure and predictive functional analysis in reclaimed soil with different vegetation types: The example of the Xiaoyi mine waste dump in Shanxi[J]. Land, 2023, 12(2): 456-470.
[36] 雷少刚, 夏嘉南, 卞正富, 等. 论露天矿区近自然生态修复[J]. 煤炭学报, 2024, 49(4): 2021-2030.
  [Lei Shaogang, Xia Jianan, Bian Zhengfu, et al. Near-natural ecological restoration in open-pit mine area[J]. Journal of China Coal Society, 2024, 49(4): 2021-2030. ]
[37] 李树志, 李学良, 尹大伟. 碳中和背景下煤炭矿山生态修复的几个基本问题[J]. 煤炭科学技术, 2022, 50(1): 286-292.
  [Li Shuzhi, Li Xueliang, Yin Dawei. Several basic issues of ecological restoration of coal mines under background of carbon neutrality[J]. Coal Science and Technology, 2022, 50(1): 286-292. ]
[38] 邢龙飞, 黄赳, 雷少刚, 等. 锡林浩特市胜利矿区近30 a植被覆盖度变化研究[J]. 河南理工大学学报(自然科学版), 2019, 38(3): 61-69.
  [Xing Longfei, Huang Jiu, Lei Shaogang, et al. Study on vegetation coverage change of Xilinhot’s Shengli mining area in recent 30 years[J]. Journal of Henan Polytechnic University (Natural Science), 2019, 38(3): 61-69. ]
[39] 吴秦豫, 姚喜军, 梁洁, 等. 鄂尔多斯市煤矿区植被覆盖改善和退化效应的时空强度[J]. 干旱区资源与环境, 2022, 36(8): 101-109.
  [Wu Qinyu, Yao Xijun, Liang Jie, et al. Spatial and temporal intensity of vegetation cover improvement and degradation in coal mining areas of Erdos City[J]. Journal of Arid Land Resources and Environment, 2022, 36(8): 101-109. ]
[40] Wang S F, Cao Y G, Pietrzykowski M, et al. Spatial distribution of soil bulk density and its relationship with slope and vegetation allocation model in rehabilitation of dumping site in loess open-pit mine area[J]. Environmental Monitoring and Assessment, 2020, 192(11): 740-758.
文章导航

/