生态与环境

策勒河下游风积地貌沉积物粒度特征及沙源分析

  • 李鑫鑫 ,
  • 毛东雷 ,
  • 来风兵 ,
  • 薛杰 ,
  • 何强强 ,
  • 马玉娇
展开
  • 1.新疆师范大学地理科学与旅游学院,新疆 乌鲁木齐 830054
    2.新疆干旱区湖泊环境与资源重点实验室,新疆 乌鲁木齐 830054
    3.中国科学院新疆生态与地理研究所荒漠与绿洲生态国家重点实验室,新疆 乌鲁木齐830011
    4.新疆策勒荒漠草地生态系统国家野外科学观测研究站,新疆 策勒 848300
李鑫鑫(1999-),女,硕士研究生,主要从事风沙地貌研究. E-mail: 18336585982@163.com
毛东雷. E-mail: donglei6325@sina.com

收稿日期: 2023-10-12

  修回日期: 2024-05-21

  网络出版日期: 2024-08-22

基金资助

国家自然科学基金地区基金项目(42061003)

Grain size characteristics and sand source analysis of three aeolian landforms in the lower reaches of the Qira River floodplain

  • LI Xinxin ,
  • MAO Donglei ,
  • LAI Fengbing ,
  • XUE Jie ,
  • HE Qiangqiang ,
  • MA Yujiao
Expand
  • 1. College of Geography and Tourism, Xinjiang Normal University, Urumqi 830054, Xinjiang, China
    2. Xinjiang Key Laboratory of Lake Environment and Resources in Arid Region, Urumqi 830054, Xinjiang, China
    3. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
    4. Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, Xinjiang, China

Received date: 2023-10-12

  Revised date: 2024-05-21

  Online published: 2024-08-22

摘要

沉积物的粒度特征记载了丰富的环境变化信息,对研究沙漠治理和荒漠化防治具有重要意义。运用粒度分析、粒级-标准偏差法和Sahu成因判别等研究方法进行分析,研究了不同风积地貌沉积物粒度特征和沉积环境的稳定性。结果表明:(1) 新月形沙丘、灌丛沙丘和低裸平沙地表层沉积物均以中砂、细砂、极细砂为优势粒级,新月形沙丘表层沉积物平均粒径最粗,为270.42 μm,灌丛沙丘表层沉积物平均粒径最细,为95.60 μm。(2) 三种地貌类型沉积物分选性较差,占比分别为74.47%、90.47%和66.7%,新月形沙丘表层沉积物呈现负偏分布、中等峰态,灌丛沙丘和低裸平沙地表层沉积物呈现对称分布、中等峰态和窄峰态。(3) 三种不同风积地貌环境敏感组分集中在22.4~399 μm之内,该组分对气候变化较为敏感,更能反应沉积环境的变化,表明该区域风沙活动强烈,沉积环境主体为风成沉积环境。(4) 灌丛沙丘表层沉积物完全属于风成环境沉积,新月形沙丘和低裸平沙地表层沉积物既有风成环境沉积,又有河流环境沉积。

本文引用格式

李鑫鑫 , 毛东雷 , 来风兵 , 薛杰 , 何强强 , 马玉娇 . 策勒河下游风积地貌沉积物粒度特征及沙源分析[J]. 干旱区研究, 2024 , 41(8) : 1413 -1422 . DOI: 10.13866/j.azr.2024.08.15

Abstract

The grain size characteristics of sediments provide extensive information on environmental change, which is of great importance for the study of desert management and for preventing desertification. The grain size characteristics and sedimentary environment stability of different aeolian landforms were studied using grain size analysis, the grain size-standard deviation method, and Sahu genetic discrimination. The results show that: (1) The surface sediments of barcrescent dune s, scrub dunes, and low bare flat sand are dominated by medium sand, fine sand, and extremely fine sand. The surface sediments were coarsest in barcrescent dunes and smallest in scrub dunes, with average grain sizes of 270.42 µm and 95.60 µm, respectively. (2) The sediment sorting of the three geomorphic types was poor, with proportions of 74.47%, 90.47% and 66.7%, respectively. The surface sediments of barcrescent dunes have a negatively skewed distribution and medium peak state, whereas the surface sediments of scrub dunes and low bare flat sand have a symmetrical distribution, medium peak state, and narrow peak state. (3) The environmentally sensitive components of the three different aeolian landforms were concentrated in the size range from 22.4-399 µm, which is more sensitive to climate change and therefore more able to reflect changes in the sedimentary environment, indicating that the aeolian sedimentary environment is mainly dominated by aeolian sedimentary environment. (4) The surface sediments of scrub dunes were found wholly in the aeolian environment, and the surface sediments of barchan dunes and low bare flat sand were found in both aeolian and fluvial environments.

参考文献

[1] 陈京平, 余子莹, 杨帆, 等. 塔克拉玛干沙漠腹地沙尘暴对新月形沙丘表面粒度变化的影响[J]. 干旱区地理, 2023, 46(12): 1995-2004.
  [ Chen Jingping, Yu Ziying, Yang Fan, et al. Effect of sandstorms on surface particle size variation of barchan dunes in the hinterland of Taklimakan Desert[J]. Arid Land Geography, 2023, 46(12): 1995-2004. ]
[2] 刘鑫, 高鑫. 塔克拉玛干沙漠南缘新月形沙丘移动特征[J]. 干旱区研究, 2024, 41(4): 661-673.
  [ Liu Xin, Gao Xin. Migration velocity of barchan dunes at the southern margin of the Taklamakan Desert[J]. Arid Zone Research, 2024, 41(4): 661-673. ]
[3] 李小乐, 魏亚娟, 党晓宏, 等. 红砂灌丛沙堆土壤粒度组成及养分积累特征[J]. 干旱区研究, 2022, 39(3): 933-942.
  [ Li Xiaole, Wei Yajuan, Dang Xiaohong, et al. Soil mechanical composition and soil nutrient content of Reaumuria soongorica nebkhas[J]. Arid Zone Research, 2022, 39(3): 933-942. ]
[4] 孔霄, 来风兵, 陈蜀江, 等. 别里库姆沙漠胡杨回涡沙丘表层沉积物粒度特征[J]. 现代地质, 2021, 35(3): 657-664.
  [ Kong Xiao, Lai Fengbing, Chen Shujiang, et al. Grain size features of surface sediments from Populus euphratica echo dunes in the Brikum Desert[J]. Geoscience, 2021, 35(3): 657-664. ]
[5] 董治宝, 屈建军, 钱广强, 等. 库姆塔格沙漠风沙地貌区划[J]. 中国沙漠, 2011, 31(4): 805-814.
  [ Dong Zhibao, Qu Jianjun, Qian Guangqiang, et al. Aeolian geomorphological regionalization of the Kumtagh Desert[J]. Journal of Desert Research, 2011, 31(4): 805-814. ]
[6] Zhang Chunlai, Shen Yaping, Li Qing, et al. Sediment grain-size characteristics and relevant correlations to the aeolian environment in China’s eastern desert region[J]. Science of the Total Environment, 2018, 627(1): 586-599.
[7] Shen Yaping, Zhang Chunlai, Wang Rende, et al. Spatial heterogeneity of surface sediment grain size and aeolian activity in the Gobi desert region of northwest China[J]. Catena, 2020, 188(2): 104-120.
[8] 何强强, 毛东雷, 徐佳瑞, 等. 策勒绿洲-沙漠过渡带不同沙丘的沉积物粒度特征及沉积环境[J]. 水土保持研究, 2023, 30(3): 135-145.
  [ He Qiangqiang, Mao Donglei, Xu Jiarui, et al. Sediment granularity characteristics and deposition environment of different dunes in the Cele oasis-desert ecotone[J]. Research of Soil and Water Conservation, 2023, 30(3): 135-145. ]
[9] 朱文煜, 毛东雷. 植被沙障下沙丘的研究进展[J]. 生态科学, 2023, 42(2): 228-237.
  [ Zhu Wenyu, Mao Donglei. Review on vegetation sand-barrier dune[J]. Ecological Science, 2023, 42(2): 228-237. ]
[10] 任孝宗, 王嵩松, 王亚梅, 等. 浑善达克沙地西部新月形沙丘和抛物线沙丘共存区的地貌特征[J]. 干旱区研究, 2023, 40(12): 2016-2030.
  [ Ren Xiaozong, Wang Songsong, Wang Yamei, et al. Geomorphologic characteristics of the co-existence zone of barchan and parabolic dunes in western Hunshandake Sandy Land[J]. Arid Zone Research, 2023, 40(12): 2016-2130. ]
[11] Sharp R P. Wind ripples[J]. Journal of Geology, 1963, 71(5): 617-636.
[12] Zimbelman J R, Irwin III R P, Williams S H, et al. The rate of granule ripples movement on Earth and Mars[J]. Icarus, 2009, 203 (1): 71-76.
[13] Wilson I G. Aeolian bedforms: Their development and origins[J]. Sedimentology, 1972, 19: 173-210.
[14] Ellwood J M, Evans P D, Wilson I G. Small scale aeolian bedforms[J]. Journal of Sedimentary Petrology, 1975, 45: 554-561.
[15] Yizhap H, Isenberg O, Wenkart R, et al. Morphology and dynamics of aeolian mega-ripples in Nahal Kasuy, southern Israel[J]. Israel Journal of Earth Sciences, 2008, 57(3): 149-165.
[16] 王利杰, 肖锋军, 董治宝, 等. 柴达木盆地巨型沙波纹条带表层沉积物粒度和地球化学元素组成特征[J]. 干旱区地理, 2023, 46(11): 1826-1835.
  [ Wang Lijie, Xiao Fengjun, Dong Zhibao, et al. Characteristics of grain size and geochemical elements composition of surface sediments of megaripple stripes in the Qaidam Basin[J]. Arid Land Geography, 2023, 46(11): 1826-1835. ]
[17] 李鹤, 丁占良, 尤莉, 等. 乌兰布和沙漠西北缘大型沙波纹的初步研究[J]. 干旱区资源与环境, 2020, 34(9): 129-136.
  [ Li He, Ding Zhanliang, You Li, et al. A preliminary study of large-scale ripples in the northwest margin of Ulan-buh Desert[J]. Journal of Arid Land Resources and Environment, 2020, 34(9): 129-136.]
[18] 苏松领, 毛东雷, 蔡富艳, 等. 新疆策勒沙漠与砾质戈壁新月形沙丘表面沉积物粒度特征及其沉积环境[J]. 干旱区资源与环境, 2020, 34(8): 124-132.
  [ Su Songling, Mao Donglei, Cai Fuyan, et al. Grain-size characteristics and sedimentary environment of sediments on the surfaces of crescent-shaped dunes in the desert and gravel Gobi in Cele, Xinjiang[J]. Journal of Arid Land Resources and Environment, 2020, 34(8): 124-132. ]
[19] 俞胜清, 阿布都米基提, 周向玲, 等. 新疆喀拉库姆沙漠新月形沙丘不同部位粒度特征[J]. 中国沙漠, 2013, 33(6): 1629-1635.
  [ Yu Shengqing, Abdu Mijiti, Zhou Xiangling, et al. Grain size characteristics of different parts of crescent dunes in Kalakum Desert, Xinjiang, China[J]. Journal of Desert Research, 2013, 33(6): 1629-1635. ]
[20] 何强强, 毛东雷, 朱文煜, 等. 新疆策勒绿洲-沙漠过渡带不同植被下的沙丘形态特征及沉积物粒度分析[J]. 水土保持学报, 2022, 36(6): 70-81.
  [ He Qiangqiang, Mao Donglei, Zhu Wenyu, et al. Morphological characteristics and sediment particle size analysis of sand dunes with different vegetations in the Cele Oasis-Desert Ecotone, Xinjiang[J]. Journal of Soil and Water Conservation, 2022, 36(6): 70-81. ]
[21] Folk R L, Ward W C. Brazos River bar: A study in the significance of grain size parameters[J]. Journal of Sedimentary Petrology, 1957, 27(1): 3-26.
[22] Wentworth C K. A scale of grade and class terms for clastic sediments[J]. Journal of Geology, 1922, 30(1): 377-392.
[23] 高永, 丁延龙, 汪季, 等. 不同植物灌丛沙丘表面沉积物粒度变化及其固沙能力[J]. 农业工程学报, 2017, 33(22): 135-142.
  [ Gao Yong, Ding Yanlong, Wang Ji, et al. Sediments particle size changes and its sand fixation ability for different shrub dunes[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(22): 135-142. ]
[24] 郝榕荣, 杨怡红, 朱龙海, 等. 环境敏感因子在威海湾沉积环境中的应用比较[J]. 沉积学报, 2023, 41(3): 763-777.
  [ Hao Rongrong, Yang Yihong, Zhu Longhai, et al. Application of environmentally sensitive factors in Bay sedimentary environments[J]. Acta Sedimentologica Sinica, 2023, 41(3): 763-777. ]
[25] 安庆, 安萍, 徐汝汝, 等. 青藏高原不同地区沉积物的粒度特征与沉积环境判别公式适用性对比研究[J]. 聊城大学学报:自然科学版, 2017, 30(4): 37-47.
  [ An Qing, An Ping, Xu Ruru, et al. Comparative study on grain size characteristics of sediments in the different regions of the Tibetan Plateau and the applicability of sedimentary environment discriminant formulas[J]. Journal of Liaocheng University(Natural Science Edition), 2017, 30(4): 37-47. ]
[26] 董治宝, 吕萍. 70年来中国风沙地貌学的发展[J]. 地理学报, 2020, 75(3): 509-528.
  [ Dong Zhibao, Lv Ping. Development of aeolian geomorphology in China in the past 70 years[J]. Acta Geographica Sinica, 2020, 75(3): 509-528. ]
[27] 郎丽丽, 王训明, 哈斯, 等. 灌丛沙丘形成演化及环境指示意义研究的主要进展[J]. 地理学报, 2012, 67(11): 1526-1536.
  [ Lang Lili, Wang Xunming, Ha Si, et al. Coppice dune formation and its significance to environmental change reconstructions in arid and semiarid areas[J]. Acta Geographica Sinica, 2012, 67(11): 1526-1536. ]
[28] 王佩, 马倩, 朱元璞, 等. 新疆图开沙漠灌丛沙堆和抛物线形沙丘表层沉积物粒度特征及其沉积环境[J]. 干旱区地理, 2021, 44(6): 1644-1653.
  [ Wang Pei, Ma Qian, Zhu Yuanpu, et al. Grain size characteristics and sedimentary environment of surface sediments from nebkhas and parabolic dunes in the Tukai Desert, Xinjiang[J]. Arid Land Geography, 2021, 44(6): 1644-1653. ]
[29] 贺振杰, 马龙, 吉力力·阿不都外力, 等. 哈萨克斯坦巴尔喀什湖沉积物粒度特征及其对区域环境变化的响应[J]. 干旱区地理, 2021, 44(5): 1317-1327.
  [ He Zhenjie, Ma Long, Jilili AbuduWaili, et al. Grain-size characteristics of Lacustrine in Balkhash Lake, Kazakhstan and its response to regional environmental changes[J]. Arid Land Geography, 2021, 44(5): 1317-1327. ]
[30] 穆桂金. 塔克拉玛干沙漠的形成时代及发展过程[J]. 干旱区地理, 1994, 17(3): 1-9.
  [ Mu Guijin. On the age and evolution of the Taklimakan Desert[J]. Arid Land Geography, 1994, 17(3): 1-9. ]
[31] 田伟东, 杨军怀, 王树源, 等. 雅鲁藏布江河谷沙丘沉积物粒度特征及其环境指示[J]. 干旱区资源与环境, 2022, 36(1): 128-134.
  [ Tian Weidong, Yang Junhuai, Wang Shuyuan, et al. Grain size characteristics of sand dunes in the Yarlung Zangbo River valley, southern Tibetan Plateau and its environmental implications[J]. Journal of Arid Land Resources and Environment, 2022, 36(1): 128-134. ]
[32] Qian Guangqiang, Dong Zhibao, Zhang Zhengcai, et al. Granule ripples in the Kumtagh Desert, China: Morphology, grain size and influencing factors[J]. Sedimentology, 2012, 59(6): 1888-1901.
[33] Sedda L, De Giudici G, Fancello D, et al. Unlocking strategic and critical raw materials: Assessment of zinc and REEs enrichment in Tailings and Zn-Carbonate in a historical Mining Area (Montevecchio, SW Sardinia)[J]. Minerals, 2024, 14: 3.
[34] Karimi S, Farshbaf Aghajani H. The strength and microstructure of cemented sand-gravel (CSG) mixture containing fine-grained particles[J]. Geo-Engineering, 2023, 14: 5.
[35] Creane S, O’ Shea M, Coughlan M, et al. Morphological modelling to investigate the role of external sediment sources and wind and wave-induced flow on sand bank sustainability: An arklow bank case study[J]. Journal of Marine Science and Engineering, 2027, 11: 10.
文章导航

/