天气与气候

乌鲁木齐市PM2.5中碳组分污染特征及来源解析

  • 魏疆 ,
  • 宋丹丹 ,
  • 赵丽莉 ,
  • 赵彩欣 ,
  • 王凌羲
展开
  • 1.新疆财经大学公共管理学院,新疆 乌鲁木齐 830012
    2.新疆财经大学旅游学院,新疆 乌鲁木齐 830012
    3.新疆乌鲁木齐市生态环境监测中心站,新疆 乌鲁木齐 830000
    4.新疆乌鲁木齐城市生态系统国家定位观测研究站,新疆 乌鲁木齐 830000
魏疆(1975-),男,博士,副教授,主要从事区域可持续发展研究. E-mail: weijiang@xjufe.edu.cn

收稿日期: 2024-02-16

  修回日期: 2024-05-28

  网络出版日期: 2024-08-22

基金资助

新疆财经大学高层次人才专项(博士启动基金)项目(2022XGC013)

Analysis of carbon component pollution characteristics and sources of PM2.5 in Urumqi City

  • WEI Jiang ,
  • SONG Dandan ,
  • ZHAO Lili ,
  • ZHAO Caixin ,
  • WANG Lingxi
Expand
  • 1. School of Public Administration, Xinjiang University of Finance and Economics, Urumqi 830012, Xinjiang, China
    2. School of Tourism Administration, Xinjiang University of Finance and Economics, Urumqi 830012, Xinjiang, China
    3. Xinjiang Urumqi Ecological Environment Monitoring Center Station, Urumqi 830000, Xinjiang, China
    4. Xinjiang Urumqi Urban Ecosystem National Research Station, Urumqi 830000, Xinjiang, China

Received date: 2024-02-16

  Revised date: 2024-05-28

  Online published: 2024-08-22

摘要

为研究乌鲁木齐市主要大气污染物PM2.5中的碳组分的浓度、污染特征及来源,于2023年7月3日—12月31日在市区按照监测规范采集PM2.5样品,并按照实验规程进行分析。结果表明:(1) 乌鲁木齐市PM2.5的平均浓度为20.1±8.1 μg·m-3,有机碳(OC)和元素碳(EC)的平均浓度分别为:3.2±1.0 μg·m-3和0.6±0.2 μg·m-3,数值上呈现出采暖期大于非采暖期的趋势。(2) 各时段OC和EC均呈现出较好的相关性,表明OC和EC具有相似的来源。(3) 通过估算得到总碳气溶胶(TCA)浓度均值为7.52±3.66 μg·m-3,占PM2.5浓度比重约为16%;而二次有机碳SOC浓度为2.11±1.43 μg·m-3,且SOC/OC比值为47.47%±12.69%,表明乌鲁木齐市大气中二次有机碳(SOC)占OC的比重接近50%。(4) 通过主成分分析得出,PM2.5中碳组分主要来源于燃煤排放和机动车尾气的排放。综合来看,采暖期大气环境污染依然严峻。

本文引用格式

魏疆 , 宋丹丹 , 赵丽莉 , 赵彩欣 , 王凌羲 . 乌鲁木齐市PM2.5中碳组分污染特征及来源解析[J]. 干旱区研究, 2024 , 41(8) : 1323 -1330 . DOI: 10.13866/j.azr.2024.08.06

Abstract

To investigate the concentration of PM2.5, pollution characteristics, and sources of carbon components in the urban area of Urumqi from July 3, 2023, to December 31, 2023, air samples were collected and monitoring and analysis were performed in accordance with experimental procedures. The average concentration of PM2.5 in Urumqi is 20.1±8.1 µg·m-3, with average concentrations of OC and EC of 3.2±1.0 and 0.6±0.2 µg·m-3, respectively, and a trend for higher concentrations during the heating season than the nonheating season. Good correlations between OC and EC were observed in various time periods, suggesting a similar source for OC and EC. The estimated average total carbon aerosol concentration is 7.52±3.66 µg·m-3, accounting for approximately 16% of the PM2.5 concentration, and the concentration of secondary organic carbon (SOC) is 2.11±1.43 µg·m-3, with an SOC/OC ratio of 47.47%±12.69%, indicating that secondary organic carbon (SOC) accounts for nearly 50% of the OC in Urumqi’s atmosphere. Principal component analysis revealed that the main sources of carbon components in PM2.5 are coal combustion emissions and vehicular exhaust. Overall, severe atmospheric pollution persists during the heating season.

参考文献

[1] 新华通讯社. 中共中央国务院关于深入打好污染防治攻坚战的意见[EB/OL]. http://www.xinhuanet.com/2021-11/07/c_1128040858.htm, 2021-11-07.
  [ Xinhua News Agency. Central committee of the communist party of China, state council. “Opinions on deepening the fight against pollution prevention and control”[EB/OL]. http://www.xinhuanet.com/2021-11/07/c_1128040858.htm, 2021-11-07. ]
[2] 新华通讯社. 中共中央国务院关于全面推进美丽中国建设的意见[EB/OL]. http://www.xinhuanet.com/politics/2024-01/11/b1e10e-998f644683b7e64d8bf8ff589b/c.html, 2024-01-11.
  [ Xinhua News Agency. Central committee of the communist party of China, state council. “Opinions on promoting the comprehensive construction of beautiful China”[EB/OL]. http://www.xinhuanet.com/politics/2024-01/11/b1e10e998f644683b7e64d8bf8ff589b/c.html, 2024-01-11. ]
[3] 许君利, 韩海东, 王建. 新疆大气PM2.5来源与潜在贡献源分析[J]. 干旱区研究, 2023, 40(6): 874-884.
  [ Xu Junli, Han Haidong, Wang Jian. Recharge sources and potential source areas of atmospheric PM2.5 in Xinjiang[J]. Arid Zone Research, 2023, 40(6): 874-884. ]
[4] 国纪良, 姬亚芹, 马妍, 等. 盘锦市夏冬季PM2.5中碳组分污染特征及来源分析[J]. 中国环境科学, 2019, 39(8): 3201-3206.
  [ Guo Jiliang, Ji Yaqin, Ma Yan, et al. Pollution characteristics and sources of carbon components in PM2.5 during summer and winter in Panjin City[J]. China Environmental Science, 2019, 39(8): 3201-3206. ]
[5] 刘子龙, 代斌, 崔卓彦, 等. 大气污染物浓度变化特征及潜在源分析——以乌鲁木齐为例[J]. 干旱区研究, 2021, 38(2): 562-569.
  [ Liu Zilong, Dai Bin, Cui Zhuoyan, et al. Concentration characteristics and potential source of atmospheric pollutants: A case study in Urumqi[J]. Arid Zone Research, 2021, 38(2): 562-569. ]
[6] Huang L, Brook J R, Zhang W, et al. Stable isotope measurements of carbon fractions (OC/EC) in airborne particulate: A new dimension for source characterization and apportionment[J]. Atmospheric Environment, 2006, 40(15): 2690-2705.
[7] Turpin B J, Lim H J. Species contributions to PM2.5 mass concentrations: Revisiting common assumptions for estimating organic mass[J]. Aerosol Science and Technology, 2001, 35(1): 602-610.
[8] 张晓雨, 赵欣, 应蓉蓉, 等. 广州大气PM2.5中含碳组分的污染特征及来源解析[J]. 生态与农村环境学报, 2018, 34(7): 659-666.
  [ Zhang Xiaoyu, Zhao Xin, Ying Rongrong, et al. Characteristics and source appointments of carbonaceous components in atmospheric fine particles in Guangzhou[J]. Journal of Ecology and Rural Environment, 2018, 34(7): 659-666. ]
[9] Khan M F, Shrasuna Y, Hirano K, et al. Characterization of PM2.5, PM2.5-10 and PM>10 in ambient air, Yokohama, Japan[J]. Atmospheric Research, 2010, 96(1): 159-172.
[10] Schauer J J, Kleeman M J, Cass G R, et al. Measurement of emissions from air pollution sources. 2: C{sub 1} through C{sub 30} organic compounds from medium duty diesel trucks[J]. Environmental Science and Technology, 1999, 33(10): 1578-1587.
[11] Chen Y, Zhi G, Feng Y, et al. Measurements of emission factors for primary carbonaceous particles from residential raw-coal combustion in China[J]. Geophysical Research Letters, 2006, 33(20): 382-385.
[12] Schauer J J, Kleeman M J, Cass G R, et al. Measurement of emissions from air pollution sources.3. C1-C29 organic compounds from fireplace combustion of wood[J]. Environmental Science and technology, 2001, 35(9): 1716-1728.
[13] He L Y, Hu M, Huang X F, et al. Measurement of emissions of fine particulate organic matter from Chinese cooking[J]. Atmospheric Environment, 2004, 38(38): 6557-6564.
[14] Chow J C, Watson J G, Lu Z, et al. Descriptive analysis of PM2.5 and PM10 at regionally representative locations during SJVAQS/AUSPEX[J]. Atmospheric Environment, 1996, 30(12): 2079-2112.
[15] Turpin B J, Huntzicker J J. Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS[J]. Atmospheric Environment, 1995, 29(23): 3527-3544.
[16] 张灿, 周志恩, 翟崇治, 等. 基于重庆本地碳成分谱的PM2.5碳组分来源分析[J]. 环境科学, 2014, 35(3): 810-819.
  [ Zhang Can, Zhou Zhi’en, Zhai Chongzhi, et al. Carbon source apportionment of PM2.5 in Chongqing based on local carbon profiles[J]. Environmental Science, 2014, 35(3): 810-819. ]
[17] Xu H, Cao J, Chow J C, et al. Inter-annual variability of wintertime PM2.5 chemical composition in Xi’an, China: Evidences of changing source emissions[J]. Science of the Total Environment, 2016, 545: 546-555.
[18] Cao J J, Wu F, Chow J C, et al. Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi’an, China[J]. Atmospheric Chemistry and Physics, 2005, 5(11): 3127-3137.
[19] Watson J G, Chow J C, Lowenthal D H, et al. Differences in the carbon composition of source profiles for diesel-and gasoline powered vehicles[J]. Atmospheric Environment, 1994, 28(15): 2493-2505.
[20] 魏疆, 王国华, 任泉, 等. 乌鲁木齐市大气污染物浓度计量模型研究[J]. 干旱区研究, 2011, 28(5): 896-900.
  [ Wei Jiang, Wang Guohua, Ren Quan, et al. Study on quantitative models of concentrations of air pollutants over Urumqi[J]. Arid Zone Research, 2011, 28(5): 896-900. ]
[21] 孙蓉花, 陈学刚, 魏疆, 等. 乌鲁木齐市PM2.5浓度与气象条件耦合分析[J]. 环境污染与防治, 2017, 39(12): 1353-1357.
  [ Sun Ronghua, Chen Xuegang, Wei Jiang, et al. Coupling analysis of PM2.5 concentrations and meteorological conditions in Urumqi[J]. Environmental Pollution and Control, 2017, 39(12): 1353-1357. ]
[22] 中国政府网. “乌-昌-石”空气质量取得较为明显改善[EB/OL]. https://www.Xinjiang.gov.cn/Xinjiang/bmdt/202404/3d88febec9824433b32e2808eab5b4d4.shtml, 2024-04-26.
  [ The Website of the Central People’s Government of the PRC. Significant improvement observed in air quality in the “Urumqi-Changji-Shihezi”area[EB/OL]. https://www.Xinjiang.gov.cn/Xinjiang/bmdt/202404/3d88f-ebec9824433b32e2808eab5b4d4.shtml, 2024-04-26. ]
[23] Zielinska B, Sagebiel J, Mcdonald J D, et al. Emission rates and comparative chemical composition from selected In-use diesel and gasoline-fueled vehicles[J]. Journal of the Air & Waste Management Association, 2004, 54(9): 1138-1150.
[24] 魏疆, 陈学刚, 任泉, 等. 乌鲁木齐冬季气溶胶散射吸收特性[J]. 中国环境监测, 2014, 30(1): 20-24.
  [ Wei Jiang, Chen Xuegang, Ren Quan, et al. Scattering and absorption properties in winter aerosol of Urumqi[J]. Environmental Monitoring in China, 2014, 30(1): 20-24. ]
[25] Kunwar B, Kawamura K. One-year observations of carbonaceous and nitrogenous components and major ions in the aerosols from subtropical Okinawa Island,an outflow region of Asian dusts[J]. Atmospheric Chemistry and Physics, 2014, 14(4): 1819-1836.
[26] 田鹏山, 曹军骥, 韩永明, 等. 关中地区冬季 PM2.5中碳气溶胶的污染特征及来源解析[J]. 环境科学, 2016, 37(2): 427-433.
  [ Tian Pengshan, Cao Junji, Han Yongming, et al. Pollution characteristics and sources of carbonaceous aerosol in PM2.5 during winter in Guanzhong Area[J]. Environmental Science, 2016, 37(2): 427-433. ]
[27] 石慧斌, 黄艺, 程馨, 等. 成都市冬季PM2.5中碳组分污染特征及来源解析[J]. 生态环境学报, 2021, 30(7): 1420-1427.
  [ Shi Huibin, Huang Yi, Cheng Xin, et al. Pollution characteristics and sources of carbonaceous components in PM2.5 during winter in Chengdu[J]. Ecology and Environmental Sciences, 2021, 30(7): 1420-1427. ]
[28] 王果, 迪丽努尔·塔力甫, 买里克扎提·买合木提, 等. 乌鲁木齐市PM2.5和PM2.5-10中碳组分季节性变化特征[J]. 中国环境科学, 2016, 36(2): 356-362.
  [ Wang Guo, Dilnur Talip, Mailikezhati Maihemuti, et al. Seasonal changes of carbonaceous speeies in PM2.5 and PM2.5-10 in Urumqi[J]. China Environmental Science, 2016, 36(2): 356-362. ]
[29] 王恬爽, 牛笑应, 文惠, 等. 兰州地区大气污染的化学组成及来源解析[J]. 环境科学学报, 2022, 42(11): 351-360.
  [ Wang Tianshuang, Niu Xiaoying, Wen Hui, et al. Chemical composition and source attribution of air pollutants in Lanzhou[J]. Acta Scientiae Circumstantiae, 2022, 42(11): 351-360. ]
[30] 张俊峰, 韩力慧, 程水源, 等. 京津冀地区典型城市大气细颗粒物碳质组分污染特征及来源[J]. 环境科学研究, 2020, 33(8): 1729-1739.
  [ Zhang Junfeng, Han Lihui, Cheng Shuiyuan, et al. Characteristics and sources of carbon pollution of fine particulate matter in typical cities in Beijing-Tianjin-Hebei Region[J]. Research of Environmental Sciences, 2020, 33(8): 1729-1739. ]
[31] 于涛, 刘亚妮, 任丽红, 等. 中国典型沿海城市冬季PM2.5中碳组分的污染特征及来源解析[J]. 环境化学, 2022, 41(1): 113-124.
  [ Yu Tao, Liu Yani, Ren Lihong, et al. Pollution characteristics and sources analysis of carbon components in PM2.5 in winter at typical coastal cities of China[J]. Environmental Chemistry, 2022, 41(1): 113-124. ]
[32] 曹宇坤, 温天雪, 张小玲, 等. 华北典型农业区PM2.5组分分析与来源解析[J]. 大气科学, 2021, 45(4): 819-832.
  [ Cao Yukun, Wen Tianxue, Zhang Xiaoling, et al. Component and source analyses of PM2.5 in typical agricultural regions of North China[J]. Chinese Journal of Atmospheric Sciences, 2021, 45(4): 819-832. ]
[33] 魏疆, 陈学刚, 任泉, 等. 乌鲁木齐市能源结构调整对冬季大气污染物浓度的影响[J]. 干旱区研究, 2015, 31(1): 155-160.
  [ Wei Jiang, Chen Xuegang, Ren Quan, et al. Effects of energy restructuring on air pollutant concentrations in winter in Urumqi[J]. Arid Zone Research, 2015, 31(1): 155-160. ]
文章导航

/