海温与海冰对宁夏汛期降水分布特征异常的协同影响
收稿日期: 2024-02-26
修回日期: 2024-04-26
网络出版日期: 2024-08-22
基金资助
宁夏智能数字预报技术研究与应用科技创新团队(2024CXTD006);2022年中国气象局复盘总结专项(FPZJ2023-145);宁夏自然科学基金项目(2023AAC03792);第七批宁夏回族自治区青年科技人才托举工程
Synergistic effects of sea surface temperature and sea ice on the anomalous characteristics of precipitation distribution during the flood season in Ningxia
Received date: 2024-02-26
Revised date: 2024-04-26
Online published: 2024-08-22
宁夏南北气候差异大,与生态息息相关的降水空间分布特征演变及其影响因素需要更加细致深入的分析,本文选取1961—2022年宁夏20个国家气象站汛期降水、NCEP/NCAR大气再分析、海温及北极海冰资料,利用气候统计诊断方法,建立了宁夏汛期降水南北异常指标,探究太平洋海温和北极海冰强迫信号协同作用对其异常的可能影响。结果表明:宁夏汛期降水南北反位相特征分量呈明显的年代际变化,新年代际背景下典型“北涝南旱”分布型相比于1991年以前频次明显增加,南北反位相分布型出现比重增大,且南北差异愈发明显。太平洋海温(Isst)和北极海冰(Iice)关键区指标的协同(符号一致)和拮抗(符号相反)作用,造成乌拉尔山、贝加尔湖及鄂霍茨克海附近的位势高度异常,使得冷空气影响路径以及水汽输送位置不同。当Isst和Iice同为正时,宁夏汛期容易出现“南涝北旱”分布型,主要以南区偏多、北区偏少和南区偏多程度大于北区为主;当Isst为正、Iice为负时,容易出现“北涝南旱”分布型,尤其以北区偏多、南区偏少为主;当Isst和Iice同为负时,容易出现“北涝南旱”分布型,以北区偏多、南区偏少和北区偏少程度小于南区为主;当Isst为负、Iice为正时,以南区、北区均偏少为主。
王岱 , 李欣 , 张雯 , 马阳 , 王素艳 , 李佳瑶 . 海温与海冰对宁夏汛期降水分布特征异常的协同影响[J]. 干旱区研究, 2024 , 41(8) : 1288 -1299 . DOI: 10.13866/j.azr.2024.08.03
There are significant climate differences between the north and south of Ningxia; however, the evolution characteristics and factors influencing precipitation spatial patterns closely related to ecology require more detailed and in-depth analysis. Using climate statistical diagnostic methods, this research examines precipitation data during the flood season for 20 meteorological stations in Ningxia, NCEP/NCAR atmospheric reanalysis, sea surface temperature and Arctic sea ice data from 1961 to 2022. An abnormal index for the north-south pattern of precipitation during the flood season in Ningxia was identified and explored the possible impact of the synergy of Pacific sea surface temperature and Arctic sea ice signals driving this anomaly. The results show that the characteristic components of the north-south reverse phase of precipitation during the flood season in Ningxia have significant interdecadal variations. The frequency of the typical “northern flood and southern drought” distribution patterns increased significantly in the recent interdecadal background compared with before 1991, the proportion of the north-south reverse phase distribution pattern increased, and the north-south difference become more obvious. The synergistic (consistent phase) and antagonistic (opposite phase) effects of key indicators of Pacific sea surface temperature (Isst) and Arctic sea ice (Iice) cause abnormal geopotential heights over the Ural Mountains, Lake Baikal, and the Okhotsk Sea, resulting in different impact paths of cold air and positions of water vapor transport. When Isst and Iice are both positive, Ningxia is prone to the distribution pattern of “southern flooding and northern drought” during the flood season, characterized mainly by more precipitation in the southern region, less in the northern region, and more in the southern region than in the northern region. When Isst is positive and Iice is negative, the “northern flooding and southern drought” distribution pattern is likely to occur, especially when the northern region has more precipitation and the southern region has less. When Isst and Iice are both negative, the “northern flooding and southern drought” distribution pattern was likely to occur, mainly because of more precipitation in the northern region, less precipitation in the southern region, and less precipitation in the northern region compared with the southern region. When Isst is negative and Iice is positive, this was mainly due to the precipitation in the southern and northern regions being lower.
[1] | Pendergrass A G. What precipitation is extreme?[J]. Science, 2018, 360(6393): 1072-1073. |
[2] | Ault T R. On the essentials of drought in a changing climate[J]. Science, 2020, 368(6488): 256-260. |
[3] | Hu T, van Dijk A I J M, Renzullo L J, et al. On agricultural drought monitoring in Australia using Himawari-8 geostationary thermal infrared observations[J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 91: 102153. |
[4] | Chen S A, Michaelides K, Grieve S W D, et al. Aridity is expressed in river topography globally[J]. Nature, 2019, 573(7775): 573-577. |
[5] | Konapala G, Mishra A K, Wada Y, et al. Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation[J]. Nature Communications, 2020, 11(1): 3044. |
[6] | Valmassoi A, Dudhia J, Di Sabatino S, et al. Irrigation impact on precipitation during a heatwave event using WRF-ARW: The summer 2015 Po Valley case[J]. Atmospheric Research, 2020, 241: 104951. |
[7] | 耿国彪. 三北工程40年—宁夏中卫用“草方格”护卫着“塞上江南”[J]. 绿色中国, 2018(20): 70-73. |
[ Geng Guobiao. Forty years of the Three North Project-Ningxia Zhongwei uses “grass squares” to protect “Jiangnan on the frontier”[J]. Green China, 2018(20): 70-73. ] | |
[8] | 田巍. 宁夏引黄灌区重点湖泊生态需水量测算及再生水补水方案研究[J]. 中国农村水利水电, 2018(12): 45-48. |
[ Tian Wei. Ecological water demand and reclaimed water recharge scheme of key lakes in the Yellow River Irrigation Area of Ningxia[J]. China Rural Water and Hydropower, 2018(12): 45-48. ] | |
[9] | 王素艳, 李欣, 王璠, 等. 宁夏降水资源格局演变特征[J]. 干旱区研究, 2021, 38(3): 733-746. |
[ Wang Suyan, Li Xin, Wang Fan, et al. Evolution characteristics of precipitation resources pattern in Ningxia[J]. Arid Zone Research, 2021, 38(3): 733-746. ] | |
[10] | Zhu Y, Wang H, Ma J, et al. Contribution of the phase transition of Pacific Decadal Oscillation to the late 1990s’ shift in East China summer rainfall[J]. Journal of Geophysical Research-Atmospheres, 2015, 120(17): 8817-8827. |
[11] | Li H, Dai A, Zhou T, et al. Responses of East Asian summer monsoon to historical SST and atmospheric forcing during 1950-2000[J]. Climate Dynamics, 2010, 34(4): 501-514. |
[12] | Yang F, Lau K. Trend and variability of China precipitation in spring and summer: Linkage to sea-surface temperatures[J]. International Journal Climatology, 2004, 24(13): 1625-1644. |
[13] | 龚志强, 赵俊虎, 封国林. 中国东部2012年夏季降水及年代际转型的可能信号分析[J]. 物理学报, 2013, 62(9): 547-556. |
[ Gong Zhiqiang, Zhao Junhu, Feng Guolin. Analysis of the summer precipitation of 2012 in East China and its possibility of decadal shift[J]. Acta Physica Sinica, 2013, 62(9): 547-556. ] | |
[14] | 孙照渤, 徐青竹, 倪东鸿. 华南春季降水的年代际变化及其与大气环流和海温的关系[J]. 大气科学学报, 2017, 40(4): 433-442. |
[ Sun Zhaobo, Xu Qingzhu, Ni Donghong. Interdecadal variation of spring precipitation in South China and its relationships with atmospheric circulation and SST[J]. Transactions of Atmospheric Sciences, 2017, 40(4): 433-442. ] | |
[15] | Zhou W, Li C Y, Chan J C L. The interdecadal variations of the summer monsoon rainfall over south China[J]. Meteorology and Atmospheric Physics, 2006, 93(3-4): 165-175. |
[16] | Yang Q, Ma Z G, Fan X G, et al. Decadal modulation of precipitation patterns over eastern China by sea surface temperature anomalies[J]. Journal of Climate, 2017a, 30(17): 7017-7033. |
[17] | 贾小龙, 李崇银. 南印度洋海温偶极子型振荡及其气候影响[J]. 地球物理学报, 2005, 48(6): 1238-1249. |
[ Jia Xiaolong, Li Chongyin. Dipole Oscillation in the Southern Indian Ocean and its impacts on climate[J]. Chinese Journal of Geophysics, 2005, 48(6): 1238-1249. ] | |
[18] | 刘青春, 秦宁生, 李栋梁, 等. 印度洋海温的偶极振荡与高原汛期降水和温度的关系[J]. 高原气象, 2005, 24(3): 350-356. |
[ Liu Qingchun, Qing Ningsheng, Li Dongliang, et al. Relationship between Dipole Oscillation of sea temperature in Indian Ocean and precipitation and temperature in flood season over Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2005, 24(3): 350-356. ] | |
[19] | 肖子牛, 晏红明. ElNino位相期间印度洋海温异常对中国南部初夏降水及初夏亚洲季风影响的数值模拟研究[J]. 大气科学, 2001, 25(2): 173-183. |
[ Xiao Ziniu, Yan Hongming. A numerical simulation of the Indian Ocean SSTA influence on the early summer precipitation of the Southern China during an ElNino year[J]. Chinese Journal of Atmospheric Sciences, 2001, 25(2): 173-183. ] | |
[20] | 闫晓勇, 张铭. 赤道东太平洋海温异常期间印度洋偶极子对东亚季风区影响的数值模拟[J]. 热带气象学报, 2004, 20(4): 375-382. |
[ Yan Xiaoyong, Zhang Ming. Numerical simulation of the Indian Ocean Dipole influence on climate variations over Eastasian Monsoon region during Equatoreast Pacific SSTA[J]. Journal of Tropical Meteorology, 2004, 20(4): 375-382. ] | |
[21] | 李欣, 王素艳, 郑广芬, 等. 不同分布型El Nino事件次年宁夏春季降水的差异[J]. 干旱气象, 2016, 34(2): 290-296. |
[ Li Xin, Wang Suyan, Zheng Guangfen, et al. Impacts of different types ElNino events on the next spring precipitation in Ningxia[J]. Journal of Arid Meteorology, 2016, 34(2): 290-296. ] | |
[22] | 杨建玲, 李艳春, 穆建华, 等. 热带印度洋海温与西北地区东部降水关系研究[J]. 高原气象, 2015, 34(3): 690-699. |
[ Yang Jianling, Li Yanchun, Mu Jianhua, et al. Analysis of relationship between sea surface temperature in Tropical Indian Ocean and precipitation in East of Northwest China[J]. Plateau Meteorology, 2015, 34(3): 690-699. ] | |
[23] | 张雯, 马阳, 李欣, 等. 赤道太平洋海温异常对宁夏7月降水的影响[J]. 干旱气象, 2020, 38(4): 543-551. |
[ Zhang Wen, Ma Yang, Li Xin, et al. Effect of equatorial Pacific SSTA on precipitation in July in Ningxia[J]. Journal of Arid Meteorology, 2020, 38(4): 543-551. ] | |
[24] | 张强, 张存杰, 白虎志, 等. 西北地区气候变化新动态及对干旱环境的影响: 总体暖干化, 局部出现暖湿迹象[J]. 干旱气象, 2010, 28(1): 1-7. |
[ Zhang Qiang, Zhang Cunjie, Bai Huzhi, et al. New development of climate change in Northwest China and its impact on arid environment: Overall warming and drying, with localized signs of warmth and humidity[J]. Journal of Arid Meteorology, 2010, 28(1): 1-7. ] | |
[25] | 李明, 孙洪泉, 苏志诚. 中国西北气候干湿变化研究进展[J]. 地理研究, 2021, 40(4): 1180-1194. |
[ Li Ming, Sun Hongquan, Su Zhicheng. Research progress in dry/wet climate variation in Northwest China[J]. Geographical Research, 2021, 40(4): 1180-1194. ] | |
[26] | 赵进平, 曹勇, 石岩月. 合成滑动相关系数的研究进展及其应用价值[J]. 中国海洋大学学报, 2022, 52(2): 1-12. |
[ Zhao Jinping, Cao Yong, Shi Yanyue. Research progress and application significance of the synthetic running correlation coefficient[J]. Periodical of Ocean University of China, 2022, 52(2): 1-12. ] | |
[27] | 魏凤英. 现代气候统计诊断与预测技术[M]. 北京: 气象出版社, 2007: 13-106. |
[ Wei Fengying. Modern Climate Statistical Diagnosis and Prediction Techniques[M]. Beijing: Meteorological Press, 2007: 13-106. ] | |
[28] | 施能. 气象科研与预报中的多元分析方法[M]. 北京: 气象出版社, 2002: 21-22. |
[ Shi Neng. Multivariate Analysis Methods in Meteorological Research and Forecasting[M]. Beijing: Meteorological Press, 2002: 21-22. ] | |
[29] | 朱姜韬, 杨庆怡, 李旭, 等. 中国西北地区夏季降水及其东部降尺度预测模型[J]. 高原气象, 2023, 42(3): 646-656. |
[ Zhu Jiangtao, Yang Qingyi, Li Xu, et al. Characteristics and east downscaling forecast model of summer precipitation in Northwest China[J]. Plateau Meteorology, 2023, 42(3): 646-656. ] | |
[30] | 张雯, 马阳, 王岱, 等. 不同时间尺度海温因子对西北地区东部夏季降水的影响及预测[J]. 干旱区研究, 2023, 40(4): 532-542. |
[ Zhang Wen, Ma Yang, Wang Dai, et al. The influence and prediction of SST predictors at different timescales on summer precipitation over the eastern part of Northwest China[J]. Arid Zone Research, 2023, 40(4): 532-542. ] | |
[31] | 杨建玲, 张素诏, 马珺玢, 等. 北大西洋海温对宁夏春末夏初降水影响及成因研究[J]. 干旱区研究, 2023, 40(5): 703-714. |
[ Yang Jianlin, Zhang Suzhao, Ma Junbin, et al. The impact of the North Atlantic sea surface temperature anomaly on precipitation anomaly in Ningxia from late spring to early summer and associated mechanisms[J]. Arid Zone Research, 2023, 40(5): 703-714. ] | |
[32] | 王芝兰. 青藏高原冬春积雪与我国西北地区夏季降水关系及其机理研究[D]. 兰州: 兰州大学, 2023. |
[ Wang Zhilan. Relations and Mechanism between Winter and Spring Snow over the Tibetan Plateau and Summer Precipitation in Northwest China[D]. Lanzhou: Lanzhou University, 2023. ] | |
[33] | 王蕊, 王慧, 李栋梁. 中国西北地区东部盛夏降水特征及对初春地表感热异常的响应[J]. 高原气象, 2019, 38(6): 1241-1250. |
[ Wang Rui, Wang Hui, Li Dongliang. Response of summer precipitation in eastern part of northwest China to the surface sensible heat in early spring[J]. Plateau Meteorology, 2019, 38(6): 1241-1250. ] | |
[34] | 李维京, 张若楠, 孙丞虎, 等. 中国南方旱涝年际年代际变化及成因研究进展[J]. 应用气象学报, 2016, 27(5): 577-591. |
[ Li Weijing, Zhang Ruonan, Sun Chenghu, et al. Recent research advances on the interannual-interdecadal variations of drought/flood in South China and associated causes[J]. Journal of Applied Meteorological Science, 2016, 27(5): 577-591. ] |
/
〈 | 〉 |