植物生态

甘肃兴隆山不同演替阶段群落土壤氮素矿化对温度的响应

  • 唐维春 ,
  • 刘小娥 ,
  • 苏世平 ,
  • 田晓娟 ,
  • 唐庆童 ,
  • 张婧
展开
  • 1.甘肃农业大学林学院,甘肃 兰州 730070
    2.兴隆山国家级自然保护区管护中心,甘肃 兰州 730100
    3.甘肃农业大学理学院,甘肃 兰州 730070
唐维春(1994-),女,硕士研究生,主要研究方向为水土保持与荒漠化防治. E-mail: mnbvcxzgfs@163.com

收稿日期: 2023-08-10

  修回日期: 2024-01-16

  网络出版日期: 2024-07-03

基金资助

甘肃农业大学科技创新基金-青年导师扶持基金项目(GAU-QDFC-2022-17);干旱荒漠区生态修复过程中林木对“水-温”协同胁迫的响应机制与试验示范研究(23YFFA0066);基于外源ABA作用的红砂抗旱生理及分子响应机制研究(32060335);甘肃省自然科学基金(21JR7RA814)

Response of soil nitrogen mineralization to temperature along the different successional stages in Xinglong Mountain, Gansu Province, China

  • TANG Weichun ,
  • LIU Xiao’e ,
  • SU Shiping ,
  • TIAN Xiaojuan ,
  • TANG Qingtong ,
  • ZHANG Jing
Expand
  • 1. College of Forestry, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    2. Management and Protection Center of Xinglong Mountain National Nature Reserve, Lanzhou 730100, Gansu, China
    3. College of Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China

Received date: 2023-08-10

  Revised date: 2024-01-16

  Online published: 2024-07-03

摘要

土壤氮素矿化是土壤中氮素循环的关键过程,而温度是影响土壤氮素矿化的最重要的因素之一,研究温度变化对不同演替阶段群落土壤氮素矿化特征的影响,对于明确陆地生态系统中土壤氮素循环过程具有重要意义。本研究以甘肃兴隆山不同演替阶段群落为研究对象,采用室内恒温好气培养法,研究不同演替阶段群落[(草地、灌丛林、白桦林(Betula platyphylla forest)、青杄-白桦林(Picea wilsonii-Betula platyphylla forest)和青杄林(Picea wilsonii forest)]在不同温度(15 ℃、25 ℃和35 ℃)下的土壤氮素矿化特征。结果表明:(1) 除草地的0~20 cm土层外,其余演替阶段群落土壤氮素矿化速率随着温度(15~35 ℃)的增加而增大,且不同演替阶段群落土壤氮素累积矿化量随着温度的增加而增加;(2) 随着演替的正向推进,不同演替阶段群落土壤氮素矿化速率与累积矿化量均呈先升高后降低趋势, 白桦林的土壤氮素矿化速率最大,分别均是草地、灌丛林、青杄-白桦林、青杄林的1.63倍、1.61倍、1.25倍、1.47倍;而青杄-白桦林的累积矿化量最高,分别是草地、灌丛林、白桦林、青杄林的0.68倍、0.72倍、0.84倍、0.97倍;(3) 随着土壤深度的增加,土壤氮素矿化速率与累积矿化量均呈降低趋势,以0~20 cm土层的最大;(4) 不同演替阶段群落在15 ℃培养和25 ℃培养下的温度敏感系数Q10均有显著差异(P<0.05),随着演替的正向进行,温度敏感系数Q10呈先降低后增加趋势,而不同演替阶段群落在25 ℃培养和35 ℃培养下的温度敏感系数Q10均无显著差异(P>0.05)。研究结果将为群落土壤的质量演变和土壤供氮能力的动态变化提供理论依据。

本文引用格式

唐维春 , 刘小娥 , 苏世平 , 田晓娟 , 唐庆童 , 张婧 . 甘肃兴隆山不同演替阶段群落土壤氮素矿化对温度的响应[J]. 干旱区研究, 2024 , 41(6) : 984 -997 . DOI: 10.13866/j.azr.2024.06.08

Abstract

Soil nitrogen mineralization is a crucial process of the soil nitrogen cycle, with temperature being one of the most important factors affecting soil nitrogen mineralization. Studying the effect of temperature on soil nitrogen mineralization characteristics in different successional stages is of great significance for understanding the soil nitrogen cycle in terrestrial ecosystems. In this study, the communities in different successional stages of Xinglong Mountain in Gansu Province were selected as the research objects. The indoor, constant temperature, aerobic culture method was used to study the soil nitrogen mineralization characteristics of five successional stages: grasslands, shrub forests, Betula platyphylla forests, Picea wilsonii-Betula platyphylla forests, and Picea wilsonii forests under temperatures of 15 ℃, 25 ℃, and 35 ℃. The results showed that (1) except for the soil at a depth of 0-20 cm in grasslands, the increase in the soil nitrogen mineralization rate of the other successional stages was directly proportional to the temperature, and the cumulative mineralization of soil nitrogen in the different successional stages showed a similar trend. (2) with the positive advancement of succession, the soil nitrogen mineralization rate and cumulative mineralization amount of different successional stages initially enhanced but then diminished. The soil nitrogen mineralization rate of B. platyphylla forests was the highest, which was 1.63-, 1.61-, 1.25-, and 1.47- times more than that of grasslands, shrub forests, P. wilsonii-B. platyphylla forests, and P. wilsonii forests, respectively. The soil nitrogen mineralization rate and cumulative mineralization amount of P. wilsonii-B. platyphylla forest were the highest, which were 0.68-, 0.72-, 0.84-, and 0.97-times greater than those of grasslands, shrub forests, B. platyphylla forests, and P. wilsonii forests, respectively. (3) the soil nitrogen mineralization rate and cumulative mineralization were inversely proportional to the soil depth, with the maximum detected at a depth of 0-20 cm. (4) the temperature sensitivity coefficient (Q10) at 15 ℃ and 25 ℃ in different successional stages varied markedly (P<0.05). The Q10 at first decreased and then increased in relation to the positive succession. The Q10 between the communities in different succession stages at 25 ℃ and 35 ℃ did not alter remarkably (P>0.05). The results of this study provide a theoretical basis for evaluating the evolution of soil quality and the dynamic changes in the soil nitrogen supply capacities in the community.

参考文献

[1] 李铭, 朱利川, 张全发, 等. 不同土地利用类型对丹江口库区土壤氮矿化的影响[J]. 植物生态学报, 2012, 36(6): 530-538.
  [Li Ming, Zhu Lichuan, Zhang Quanfa, et al. Impacts of different land use types on soil nitrogen mineralization in Danjiangkou Reservoir Area, China[J]. Chinese Journal of Plant Ecology, 2012, 36(6): 530-538. ]
[2] 高真真, 段卫东, 胡坤, 等. 温度和水分对典型香型烟区植烟土壤氮素矿化的影响[J]. 土壤, 2019, 51(3): 442-450.
  [Gao Zhenzhen, Duan Weidong, Hu Kun, et al. Effects of temperature and moisture on nitrogen mineralization in tobacco planting soil in typical cigarette-type tobacco area[J]. Soils, 2019, 51(3): 442-450. ]
[3] Stanford G, Smith S J. Nitrogen mineralization potentials of soils[J]. Soil Science Society of America Journal, 1972, 981: 465-472.
[4] 宋良翠, 马维伟, 李广, 等. 温度变化对尕海湿地不同退化梯度土壤氮矿化的影响[J]. 草业学报, 2021, 30(9): 27-37.
  [Song Liangcui, Ma Weiwei, Li Guang, et al. Effects of temperature on soil nitrification potential of Gahai degraded wetland[J]. Acta Agrestia Sinica, 2021, 30(9): 27-37. ]
[5] 李志杰, 杨万勤, 岳楷, 等. 温度对川西亚高山3种森林土壤氮矿化的影响[J]. 生态学报, 2017, 37(12): 4045-4052.
  [Li Zhijie, Yang Wanqin, Yue Kai, et al. Effects forests of temperature on soil nitrogen mineralization in three subalpine forests of western Sichuan, China[J]. Acta Ecologica Sinica, 2017, 37(12): 4045-4052. ]
[6] Gunti?as M, Leirós M, Trasar-Cepeda C, et al. Effects of moisture and temperature on net soil nitrogen mineralization: A laboratory study[J]. European Journal of Soil Biology, 2011, 48: 73-80.
[7] 欧阳学军, 周国逸, 魏识广, 等. 南亚热带森林植被恢复演替序列的土壤有机碳氮矿化[J]. 应用生态学报, 2007, 18(8): 1688-1694.
  [Ouyang Xuejun, Zhou Guoyi, Wei Shiguang, et al. Soil organic carbon and nitrogen mineralization along a forest successional gradient in Southern China[J]. Chinese Journal of Applied Ecology, 2007, 18(8): 1688-1694. ]
[8] 邢肖毅, 黄懿梅, 安韶山, 等. 黄土高原沟壑区森林带不同植物群落土壤氮素含量及其转化[J]. 生态学报, 2013, 33(22): 7181-7189.
  [Xing Xiaoyi, Huang Yimei, An Shaoshan, et al. Soil nitrogen concenlralions and translormalions under dilerent vegelalion lypes in foresled zones of the loess Gully Region[J]. Acla Ecologica Sinica, 2013, 33(22): 7181-7189. ]
[9] Wang W J, Smith C J, Chen D. Towards a standardised procedure for determining the potentially mineralisable nitrogen of soil[J]. Biology and Fertility of Soils, 2003, 37(6): 362-374.
[10] 傅民杰, 王传宽, 王颖, 等. 四种温带森林土壤氮矿化与硝化时空格局[J]. 生态学报, 2009, 29(7): 3747-3758.
  [Fu Minjie, Wang Chuankuan, Wang Ying, et al. Temporal and spatial patterns of soil nitrogen mineralization and nitrification in four temperate forests[J]. Acta Ecologica Sinica, 2009, 29(7): 3747-3758. ]
[11] 刘欣, 黄运湘, 袁红, 等. 植被类型与坡位对喀斯特土壤氮转化速率的影响[J]. 生态学报, 2016, 36(9): 2578-2587.
  [Liu Xin, Huang Yunxiang, Yuan Hong, et al. Effects of vegetation type and slope position on soil nitrogen transformation rate in Karst regions[J]. Acta Ecologica Sinica, 2016, 36(9): 2578-2587. ]
[12] 魏强, 凌雷, 柴春山, 等. 甘肃兴降山不同演替阶段典型森林群落的凋落物动态[J]. 南京林业大学报(自然科学版), 2017, 41(5): 27-34.
  [Wei Qiang, Ling Lei, Chai Chunshan, et al. Water conservation function of litter and soil depth undermain forest types in Xinglong Mountain of Gansu[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2017, 41(5): 27-34. ]
[13] 魏强, 凌雷, 王多锋, 等. 甘肃兴隆山主要森林类型凋落物累积量及其影响因子[J]. 林业科学研究, 2015, 28(6): 818-825.
  [Wei Qiang, Ling Lei, Wang Duofeng, et al. Litter accumulation and its impact factor of three main forest communities in Xinglong Mountain,Gansu Province[J]. Forest Research, 2015, 28(6): 818-825. ]
[14] 魏强, 凌雷, 张广忠, 等. 甘肃兴隆山主要森林类型凋落物累积量及持水特性[J]. 应用生态学报, 2011, 22(10): 2589-2598.
  [Wei Qiang, Ling Lei, Zhang Guangzhong, et al. Water-holding characteristics and accumulation amount of the litters under main forest types in Xinglong Mountain of Gansu, Northwest China[J]. Chinese Journal of Applied Ecology, 2011, 22(10): 2589-2598. ]
[15] 魏强, 凌雷, 柴春山, 等. 甘肃兴隆山森林演替过程中的土壤理化性质[J]. 生态学报, 2012, 32(15): 4700-4713.
  [Wei Qiang, Ling Lei, Chai Chunshan, et al. Soil physical and chemical properties in forest succession process in Xinglong Mountain of Gansu[J]. Acta Ecologica Sinica, 2012, 32(15): 4700-4713. ]
[16] 魏强, 凌雷, 王多锋, 等. 不同海拔甘肃兴隆山主要森林群落的土壤理化性质[J]. 西北林学院学报, 2019, 34(4): 26-35.
  [Wei Qiang, Ling Lei, Wang Duofeng, et al. Soil physicochemical properties of three main forest communities at different altitudes in Xinglong Mountain of Gansu Province[J]. Journal of Northwest Forestry University, 2019, 34(4): 26-35. ]
[17] 魏强, 凌雷, 张广忠, 等. 兴隆山森林群落不同演替阶段优势乔木种群结构特征[J]. 南京林业大学(自然科学版), 2015, 39(5): 59-66.
  [Wei Qiang, Ling Lei, Zhang Guangzhong, et al. Structure characteristics of dominant tree species population in different succession stages of forest community in Xinglong Mountain[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2015, 39(5): 59-66. ]
[18] 凌雷, 魏强, 柴春山, 等. 甘肃兴隆山主要森林类型苔藓生物量及其影响因子[J]. 中国水土保持, 2016(10): 60-64.
  [Ling Lei, Wei Qiang, Chai Chunshan, et al. Bryophyte biomass and its influencing factors in major forest types in Xinglong Mountain, Gansu Province[J]. Chinese Journal of Soil and Water Conservation, 2016(10): 60-64. ]
[19] 魏强, 凌雷, 张广忠, 等. 甘肃兴隆山主要森林类型土壤渗透性[J]. 东北林业大学学报, 2013, 41(3): 57-62.
  [Wei Qiang, Ling Lei, Zhang Guangzhong, et al. Soil infiltration characteristics of main forest types in Xinglong Mountain of Gansu[J]. Journal of Northeast Forestry University, 2013, 41(3): 57-62. ]
[20] 王乐童, 雒晓芳, 赵鹏飞, 等. 兰州兴隆山土壤微生物的分布及其相关特性分析[J]. 中国微生态学杂志, 2021, 33(11): 1283-1289.
  [Wang Letong, Luo Xiaofang, Zhao Pengfei, et al. Distribution and characteristics of soil microorganisms in Xinglong Mountain in Lanzhou[J]. China Journal of Microecology, 2021, 33(11): 1283-1289. ]
[21] 张军, 陶华旸, 李文杰, 等. 甘肃省草地生态系统时空变化特征[J]. 草业科学, 2022, 39(6): 1106-1114.
  [Zhang Jun, Tao Huayang, Li Wenjie, et al. Spatial change of rassland ecosystem in Gansu Province[J]. Pratacultural Science, 2022, 39(6): 1106-1114. ]
[22] 钟诚, 张军保, 韩晓明, 等. 不同土壤质地田间持水量实验成果分析[J]. 东北水利水电, 2014, 32(5): 65-67.
  [Zhong Cheng, Zhang Junbao, Han Xiaoming, et al. Analysis of experimental results of field water holding capacity in different soil textures[J]. Northeast Water Resources and Hydropower, 2014, 32(5): 65-67. ]
[23] 端爱玲, 韩张雄, 黄艳, 等. 靛酚蓝比色法测定土壤中铵态氮注意事项[J]. 当代化工, 2021, 50(12): 2861-2864.
  [Duan Ailing, Han Zhangxiong, Huang Yan, et al. Problems and solutions for determination of ammonium nitrogen in soil by the method of indophenol blue colorimetry[J]. Contemporary Chemical Industry, 2021, 50(12): 2861-2864. ]
[24] 苗杰, 李斐, 张加康, 等. 紫外分光光度法测定土壤硝态氮校正因数的优化[J]. 华北农学报, 2019, 34(S1): 204-212.
  [Miao Jie, Li Fei, Zhang Jiakang, et al. Optimization of correction factor of soil nitrate nitrogen by ultraviolet spectrophotometry[J]. Acta Agriculturae Boreal-Sinica, 2019, 34(S1): 204-212. ]
[25] Heumann S, B?ttcher J. Temperature functions of the rate coefficients of net Nmineralization in sandy arable soils. Part I: derivation from laboratory incubations, I[J]. Journal of Plant Nutrition and Soil Science, 2004, 167: 381-389.
[26] Benbi D K, Khosa M K. Effects of temperature, moisture, and chemical composition of organic substrates on C mineralization in soils[J]. Communications in Soil Science and Plant Analysis, 2014, 45(21): 2734-2753.
[27] 吕世丽, 李新平, 李文斌, 等. 牛背梁自然保护区不同海拔高度森林土壤养分特征分析[J]. 西北农林科技大学学报(自然科学版), 2013, 41(4): 161-168.
  [Lv Shili, Li Xinping, Li Wenbin, et al. Forest soil nutrient characteristics at different altitudes inNiubeiliang National Natural Reserve[J]. Journal of Northwest A & F University (Natural Sciences Edition), 2013, 41(4): 161-168. ]
[28] Yin H, Chen Z, Liu Q. Effects of experimental warming on soil N transformations of two coniferous species, Eastern Tibetan Plateau, China[J]. Soil Biology and Biochemistry, 2012, 50: 77-84.
[29] Gill A L, Grinder R M, See C R, et al. Soil carbon availability decouples net nitrogen mineralization and net nitrification across United States long term ecological research sites[J]. Biogeochemistry, 2023, 162(1): 13-24.
[30] 陈红, 马文明, 王长庭, 等. 高寒草地灌丛化对土壤团聚体稳定性及其胶结物质的影响[J]. 土壤学报, 2023, 60(1): 151-163.
  [Chen Hong, Ma Wenming, Wang Changting, et al. Efects of shrub-encroached grassland on the stability of soil aggregales and cementing materials in alpine grassland of Qinghai-Tibet Plateaul[J]. Acta Pedologica Sinica, 2023, 60(1): 151-163. ]
[31] 刘姝媛, 胡浪云, 储双双, 等. 3种林木凋落物分解特征及其对赤红壤酸度及养分含量的影响[J]. 植物资源与环境报, 2013, 22(3): 11-17.
  [Liu Shuyuan, Hu Langyun, Chu Shuangshuang, et al. Decomposition conten characteristics of three forest litters and their effects on acidity and nutrient red soil[J]. Journal of Plant Resources and Environment, 2013, 22(3): 11-17. ]
[32] 夏国栋, 朱四喜, 李武江, 等. 喀斯特煤矿区土地利用类型对土壤养分、酶活性及化学计量特征的影响[J]. 中国无机分析化学, 2022, 12(6): 67-76.
  [Xia Guodong, Zhu Sixi, Li Wujiang, et al. Effects of land use types on soil nutrients, enzyme activities and stoichiometric characteristics in Karst Coal Mining Areas[J]. Chinese Journal of Inorganic Analytical Chemistry, 2022, 12(6): 67-76. ]
[33] 王光军, 田大伦, 朱凡, 等. 湖南省4种森林群落土壤氮的矿化作用[J]. 生态学报, 2009, 29(3): 1607-1615.
  [Wang Guangjun, Tian Dalun, Zhu Fan, et al. Net nitrogen mineralization in soils under four forest communities in Hunan Province[J]. Acta Ecological Sinica, 2009, 29(3): 1607-1615. ]
[34] Hishi T, Urakawa R, Tashiro N, et al. Seasonality of factors controlling N mineralization rates among slope positions and aspects in cool-temperate deciduous natural forests and larch plantations[J]. Biology and Fertility of Soils, 2014, 50(2): 343-356.
[35] 吴建国, 苌伟, 艾丽. 祁连山中部云杉林和高寒草甸土壤N矿化及其影响因素研究[J]. 林业科学研究, 2008(2): 161-167.
  [Wu Jianguo, Chang Wei, Ai Li. The mineralization of soil nitrogen and its motivating factors to the Dragon Spruce forest and alpine meadows of the Oilian Mountains[J]. Forest Research, 2008(2): 161-167. ]
[36] Deressa A. Effects of soil moisture and temperature on carbon and nitrogen mineralization in grassland soils fertilized with improved cattle slurry manure with and without manure additive[J]. Physical Review E Statal Nonlinear and Soft Matter Physics, 2015, 2(1): 1-9.
[37] Ferrari J B. Fine-scale pattems of leaf litterlall and nitrogen cycling in an old-growth forest[J]. Canadian Joumal of Forest Research, 1999, 29(3): 291-302.
文章导航

/