水土资源

2000—2020年阿克苏河流域土地利用强度变化及其对蒸散发的影响

  • 姚小晨 ,
  • 高凡 ,
  • 韩方红 ,
  • 何兵
展开
  • 1.新疆农业大学水利与土木工程学院,新疆 乌鲁木齐 830052
    2.新疆水利工程安全与水灾害防治重点实验室,新疆 乌鲁木齐 830052
姚小晨(1997-),男,硕士研究生,主要从事水文与水资源研究. E-mail: xchenyao@163.com

收稿日期: 2023-09-04

  修回日期: 2024-04-20

  网络出版日期: 2024-07-03

基金资助

塔里木河三源流下泄断面至阿拉尔断面区间河段水量损失分析与对策研究(TGJAKSJJG-2022KYXM0003);新疆塔里木河重要源流区(阿克苏河流域)山水林田湖草沙一体化保护和修复工程关键问题和关键技术研究(AKSSSXM2022620);2022年研究生“新疆水利工程安全与水灾害防治重点实验室”研究项目(ZDSYS-YJS-2022-23);第三次新疆综合科学考察项目(2021xjkk02003)

Land use intensity change and its influence on evapotranspiration in Aksu River Basin from 2000 to 2020

  • YAO Xiaochen ,
  • GAO Fan ,
  • HAN Fanghong ,
  • HE Bing
Expand
  • 1. College of Water Conservancy and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
    2. Xinjiang Key Laboratory of Water Conservancy Engineering Safety and Water Disaster Prevention, Urumqi 830052, Xinjiang, China

Received date: 2023-09-04

  Revised date: 2024-04-20

  Online published: 2024-07-03

摘要

深入挖掘土地利用类型内部转换过程信息,衡量土地利用变化强度对蒸散发的影响,准确评估实际蒸散发时空变化规律对流域水资源科学管理和高效利用具有重要意义。基于强度分析模型揭示2000—2020年阿克苏河流域不同层次土地利用类型强度变化特征及对流域实际蒸散发的影响,结果表明:(1) 时间间隔层次上流域土地利用变化强度呈先增加后减小的趋势,2000—2005年变化最为活跃。地类层次上耕地、建设用地、水域、林地面积增减变化表现较为活跃。转移层次上耕地面积的增加主要来源于草地(占比54.31%)和未利用地(占比26.26%);(2) 流域多年平均蒸散发为166.56 mm。年际波动较大,整体呈增加趋势,年增长率为3.68 mm·a-1。年内4—10月蒸散发占全年蒸散发的71.76%。实际蒸散发高值区分布在山区林地和平原区耕地,低值区分布在山前荒漠区及绿洲与荒漠过渡带地区;(3) 主成分分析结果表明,阿克苏河流域实际蒸散发变化的驱动力为草地、耕地、未利用地的转化强度,土地利用变化强度与实际蒸散发之间的相关系数为0.87,二者存在较强的相关关系。

本文引用格式

姚小晨 , 高凡 , 韩方红 , 何兵 . 2000—2020年阿克苏河流域土地利用强度变化及其对蒸散发的影响[J]. 干旱区研究, 2024 , 41(6) : 951 -963 . DOI: 10.13866/j.azr.2024.06.05

Abstract

It is of great significance for scientific management and efficient utilization of water resources in the basin to deeply explore the information of internal conversion process of land use types, measure the impact of land use change intensity on evapotranspiration, and accurately evaluate the temporal and spatial variation of ET. Based on the intensity analysis model, the intensity change characteristics of land use types at different levels in the Aksu River Basin from 2000 to 2020 and their impact on the actual evapotranspiration of the basin were revealed. The results showed that : (1) At the time interval level, the intensity of land use change in the basin increased first and then decreased, and the change was the most active from 2000 to 2005. At the land type level, the increase and decrease of cultivated land, construction land, water area and forest land area are more active. The increase of cultivated land area at the transfer level mainly comes from grassland (54.31%) and unused land (26.26%). (2) The average annual evapotranspiration of the basin is 166.56 mm. The interannual fluctuation is large, and the overall trend is increasing, with an annual growth rate of 3.68 mm·a-1. Evapotranspiration from April to October accounted for 71.76% of the annual evapotranspiration. The high value of actual evapotranspiration is distributed in mountainous forest land and cultivated land in plain area, and the low value area is distributed in piedmont desert area and oasis and desert transition zone. (3) The results of principal component analysis show that the driving force of ETa change in Aksu River Basin is the conversion intensity of grassland, cultivated land and unused land. The correlation coefficient between land use change intensity and actual evapotranspiration is 0.87, and there is a strong correlation between the two.

参考文献

[1] 王旭东, 姚尧, 任书良, 等. 耦合FLUS和Markov的快速发展城市土地利用空间格局模拟方法[J]. 地球信息科学学报, 2022, 24(1): 100-113.
  [Wang Xudong, Yao Yao, Ren Shuliang, et al. A coupled FLUS and Markov approach to simulate the spatial pattern of land use in rapidly developing cities[J]. Journal of Geo-information Science, 2022, 24(1): 100-113. ]
[2] 王娇娇, 尹小君, 刘陕南, 等. 基于深度学习的玛纳斯土地利用时空格局变化与预测[J]. 干旱区研究, 2023, 40(1): 69-77.
  [Wang Jiaojiao, Yin Xiaojun, Liu Shannan, et al. Study on the change and prediction of spatiotemporal pattern of land use in Manasi region based on deep learning[J]. Arid Zone Research, 2023, 40(1): 69-77. ]
[3] 姚佳, 陈启慧, 李琼芳, 等. 伊犁河——巴尔喀什湖流域实际蒸散发时空变化特征及其环境影响因子[J]. 干旱区研究, 2022, 39(5): 1564-1575.
  [Yao Jia, Chen Qihui, Li Qiongfang, et al. Spatial and temporal variability of evapotranspiration and influencing factorsin the Ili River-Balkhash Lake Basin[J]. Arid Zone Research, 2022, 39(5): 1564-1575. ]
[4] Dey P, Mishra A. Separating the impacts of climate change and human activities on streamflow: A review of methodologies and critical assumptions[J]. Journal of Hydrology, 2017, 548: 278-290.
[5] Wang Q, Cheng L, Zhang L, et al. Quantifying the impacts of land-cover changes on global evapotranspiration based on the continuous remote sensing observations during 1982-2016[J]. Journal of Hydrology, 2021, 598: 126231.
[6] Li X Y, Zou L, Xia J, et al. Untangling the effects of climate change and land use/cover change on spatiotemporal variation of evapotranspiration over China[J]. Journal of Hydrology, 2022, 612: 128189.
[7] Fisher J B, Melton F, Middleton E, et al. The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources[J]. Water Resources Research, 2017, 53(4): 2618-2626.
[8] Jasechko S, Sharp Z D, Gibson J J, et al. Terrestrial water fluxes dominated by transpiration[J]. Nature, 2013, 496(7445): 347-350.
[9] Pascolini-Campbell M, Reager J T, Chandanpurkar H A, et al. A 10 per cent increase in global land evapotranspiration from 2003 to 2019[J]. Nature, 2022, 604(7904): 202.
[10] 王颖慧, 丁建丽, 李晓航, 等. 伊犁河流域土地利用/覆被变化对生态系统服务价值的影响——基于强度分析模型[J]. 生态学报, 2022, 42(8): 3106-3118.
  [Wang Yinghui, Ding Jianli, Li Xiaohang, et al. Impact of LUCC on ecosystem services values in the Yili River Basin based on an intensity analysis model[J]. Acta Ecologica Sinica, 2022, 42(8): 3106-3118. ]
[11] Aldwaik Z S, Pontius G R. Intensity analysis to unify measurements of size and stationarity of land changes by interval, category, and transition[J]. Landscape and Urban Planning, 2012, 106(1): 103-144.
[12] Huang J, Pontius Jr R G, Li Q, e t al. Use of intensity analysis to link pat terns with processes of land change from 1986 to 2007 in a coastal watershed of southeast China[J]. Applied Geography, 2012, 34: 371-384.
[13] 杨建新, 龚健, 高静, 等. 国家中心城市土地利用变化稳定性和系统性特征——以武汉市为例[J]. 资源科学, 2019, 41(4): 701-716.
  [Yang Jianxin, Gong Jian, Gao Jing, et al. Stationary and systematic characteristics of land use and land cover change in the national central cities of China using intensity analysis: A case study of Wuhan City[J]. Resources Science, 2019, 41(4): 701-716. ]
[14] 田立鑫, 韩美, 王敏, 等. 莱州湾南岸海岸带土地利用时空演变及稳定性研究[J]. 水土保持研究, 2021, 28(4): 259-265, 274, 2.
  [Tian Lixin, Han Mei, Wang Min, et al. Spatiotemporal evolution and stability of land use type in the coastal zone of the south coast in Laizhou Bay[J]. Research of Soil and Water Conservation, 2021, 28(4): 259-265, 274, 2. ]
[15] 孙云华, 郭涛, 崔希民. 昆明市土地利用变化的强度分析与稳定性研究[J]. 地理科学进展, 2016, 35(2): 245-254.
  [Sun Yunhua, Guo Tao, Cui Ximin. Intensity analysis and stationarity of land use change in Kunming City[J]. Progress in Geography, 2016, 35(2): 245-254. ]
[16] 谭雪晶, 姜广辉, 付晶, 等. 主体功能区规划框架下国土开发强度分析——以北京市为例[J]. 中国土地科学, 2011, 25(1): 70-77.
  [Tan Xuejing, Jiang Guanghui, Fu Jing, et al. Analysis on land development intensity under the framework of major functional land zoning: Taking Beijing as an example[J]. China Land Science, 2011, 25(1): 70-77. ]
[17] Deng Z, Quan B. Intensity analysis to communicate detailed detection of land use and land cover change in Chang-Zhu-Tan Metropolitan Region, China[J]. Forests, 2023, 14(5): 939.
[18] 阿曼妮萨·库尔班, 满苏尔·沙比提, 艾克旦·依萨克, 等. 近19年新疆阿克苏河流域耕地利用时空演变特征[J]. 中国水土保持科学(中英文), 2022, 20(3): 72-80.
  [Amanisa Korban, Mansur Shabiti, Ekdan Isaak, et al. Spatiotemporal evolution of arable land use in Aksu River Basin, Xinjiang in recent 19 years[J]. Science of Soil and Water Conservation, 2022, 20(3): 72-80. ]
[19] 曹永香, 毛东雷, 薛杰, 等. 绿洲-沙漠过渡带植被覆盖动态变化及其驱动因素——以新疆策勒为例[J]. 干旱区研究, 2022, 39(2): 510-521.
  [Cao Yongxiang, Mao Donglei, Xue Jie, et al. Dynamic changes and driving factors of vegetation cover in the oasis-desert ecotone: A case study of Cele, Xinjiang[J]. Arid Zone Research, 2022, 39(2): 510-521. ]
[20] 张静, 任志远. 基于MOD16的汉江流域地表蒸散发时空特征[J]. 地理科学, 2017, 37(2): 274-282.
  [Zhang Jing, Ren Zhiyuan. Spatiotemporal characteristics of evapotranspiration based on MOD16 in the Hanjiang River Basin[J]. Scientia Geographica Sinica, 2017, 37(2): 274-282. ]
[21] 王卓月, 孔金玲, 李英, 等. 基于MOD16的银川平原地表蒸散量时空特征及影响因素分析[J]. 水文地质工程地质, 2021, 48(3): 53-61.
  [Wang Zhuoyue, Kong Jinling, Li Ying, et al. An analysis of spatio-temporal characteristics and influencing factors of surface evapotranspiration in the Yinchuan Plain based on MOD16 data[J]. Hydrogeology & Engineering Geology, 2021, 48(3): 53-61. ]
[22] 李晴, 杨鹏年, 彭亮, 等. 基于MOD16数据的焉耆盆地蒸散量变化研究[J]. 干旱区研究, 2021, 38(2): 351-358.
  [Li Qing, Yang Pengnian, Peng Liang, et al. Study of the variation trend of evapotranspiration in the Yanqi Basin based on MOD16 data[J]. Arid Zone Research, 2019, 38(2): 351-358. ]
[23] 王志成, 李稚, 张辉, 等. 阿克苏河流域灌区土地利用变化对蒸散耗水的影响[J]. 灌溉排水学报, 2018, 37(6): 79-85.
  [Wang Zhicheng, Li Zhi, Zhang Hui, et al. The impact of land use change on evapotranspiration of the irrigated areas in Aksu Basin[J]. Journal of Irrigation and Drainage, 2018, 37(6): 79-85. ]
[24] 王欣珂, 林弘, 谢香群, 等. 闽江流域土地利用时空变化特征及驱动因子分析[J]. 生态科学, 2023, 42(4): 171-181.
  [Wang Xinke, Lin Hong, Xie Xiangqun, et al. Spatiotemporal change characteristics and driving factors of landuse in Minjiang River Basin[J]. Ecological Sciences, 2023, 42(4): 171-181. ]
[25] 危小建, 赵莉, 程朋根, 等. 中国土地利用与生态服务价值空间动态研究——以地级及以上城市为例[J]. 水土保持研究, 2022, 29(4): 370-376.
  [Wei Xiaojian, Zhao Li, Cheng Pengen, et al. Research on the spatial dynamics of land use and ecological service value in China: Taking prefecture-level cities and beyond as an example[J]. Research of Soil and Water Conservation, 2022, 29(4): 370-376. ]
[26] 付乐, 迟妍妍, 于洋, 等. 2000—2020年黄河流域土地利用变化特征及影响因素分析[J]. 生态环境学报, 2022, 31(10): 1927-1938.
  [Fu Le, Chi Yanyan, Yu Yang, et al. Characteristics and driving forces of land use change in the Yellow River Basin from 2000 to 2020[J]. Ecological and Environmental Sciences, 2022, 31(10): 1927-1938. ]
[27] 黄钰清, 李骁尧, 于强, 等. 1995-2018年黄河流域土地利用变化及驱动力分析[J]. 西北林学院学报, 2022, 37(6): 113-121.
  [Huang Yuqing, Li Xiaoyao, Yu Qiang, et al. An analysis of land use change and driving forces in the Yellow River Basin from 1995 to 2018[J]. Journal of Northwest Forestry University, 2022, 37(6): 113-121. ]
[28] 严长安, 杨汝兰, 付潇华, 等. 土地利用变化对滇池流域生态系统服务价值的影响[J]. 生态学报, 2023, 43(15): 6194-6202.
  [Yan Chang’an, Yang Rulan, Fu Xiaohua, et al. Impact of land-use change on ecosystem services value in Dianchi Lake Basin[J]. Acta Ecologica Sinica, 2023, 43(15): 6194-6202. ]
[29] 苏迎庆, 张恩月, 刘源, 等. 汾河流域土地利用变化及生态环境效应[J]. 干旱区研究, 2022, 39(3): 968-977.
  [Su Yingqing, Zhang Enyue, Liu Yuan, et al. Land-use change and ecological environment effects on Fenhe River Basin[J]. Arid Zone Research, 2022, 39(3): 968-977. ]
[30] 高宇婷, 于洋, 孙凌霄, 等. 塔里木盆地南缘绿洲土地覆盖变化及驱动力[J]. 干旱区研究, 2021, 38(4): 1172-1183.
  [Gao Yuting, Yu Yang, Sun Lingxiao, et al. Land coverage change and driving forces of an oasis in the southern margin of Tarim Basin[J]. Arid Zone Research, 2021, 38(4): 1172-1183. ]
[31] 牛乐乐, 张必成, 贾天忠, 等. 青海省海西州土地利用变化强度分析与稳定性研究[J]. 水土保持学报, 2021, 35(2): 152-159.
  [Niu Lele, Zhang Bicheng, Jia Tianzhong, et al. Analysis on intensity and stability of land use change in Haixi Mongolian and Tibetan Autonomous Prefecture of Qinghai Province[J]. Journal of Soil and Water Conservation, 2021, 35(2): 152-159. ]
[32] 李帅呈, 龚健, 杨建新, 等. 兰西城市群土地利用/覆被变化模式特征——基于强度分析框架[J]. 资源科学, 2023, 45(3): 480-493.
  [Li Shuaicheng, Gong Jian, Yang Jianxin, et al. Characteristics of LUCC patterns of the Lanzhou-Xining urban agglomeration: Based on an intensity analysis framework[J]. Resources Science, 2023, 45(3): 480-493. ]
[33] 郭晓彤, 孟丹, 蒋博武, 等. 基于MODIS蒸散量数据的淮河流域蒸散发时空变化及影响因素分析[J]. 水文地质工程地质, 2021, 48(3): 45-52.
  [Guo Xiaotong, Meng Dan, Jiang Bowu, et al. Spatio-temporal change and influencing factors of evapotranspiration in the Huaihe River Basin based on MODIS evapotranspiration data[J]. Hydrogeology & Engineering Geology, 2021, 48(3): 45-52. ]
文章导航

/