农业生态

生物炭施加对微咸水滴灌棉田土壤水热盐及棉花生长的影响

  • 赖虹雨 ,
  • 吕德生 ,
  • 朱艳 ,
  • 王振华 ,
  • 温越 ,
  • 宋利兵 ,
  • 齐浩
展开
  • 石河子大学水利建筑工程学院,现代节水灌溉兵团重点实验室,农业农村部西北绿洲节水农业重点实验室,新疆 石河子 832000
赖虹雨(2000-),女,硕士研究生,主要研究方向为节水灌溉理论与技术. E-mail: lhy127207@163.com

收稿日期: 2023-05-07

  修回日期: 2023-11-21

  网络出版日期: 2024-03-11

基金资助

国家重点研发计划课题(2021YFD1900802);国家自然科学基金项目(52169011);国家自然科学基金项目(52169012);八师石河子市重点领域科技攻关项目(2022NY04);石河子大学创新发展专项项目(CXFZ202106)

Effects of biochar application on soil hydrothermal salinity and cotton growth in brackish water drip irrigation cotton field

  • LAI Hongyu ,
  • LYU Desheng ,
  • ZHU Yan ,
  • WANG Zhenhua ,
  • WEN Yue ,
  • SONG Libing ,
  • QI Hao
Expand
  • College of Water Conservancy & Architectural Engineering, Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi 832000, Xinjiang, China

Received date: 2023-05-07

  Revised date: 2023-11-21

  Online published: 2024-03-11

摘要

为解决北疆淡水缺乏和土壤质量下降的问题,通过大田试验探明不同灌水矿化度及生物炭施加量对棉田土壤水热盐环境及棉花生长的影响。设置4个生物炭施加水平(B0:0 t·hm-2、B1:20 t·hm-2、B2:40 t·hm-2、B3:60 t·hm-2)和3个灌水矿化度水平(S1:1 g·L-1、S2:3 g·L-1、S3:5 g·L-1),采用双因素完全随机组合试验,研究不同处理对土壤水盐温分布、棉花生长指标、干物质积累量、产量及水分利用率的影响。结果表明:施加生物炭与灌水矿化度的增加均使得土壤含水率和含盐量升高。生物炭施加量的增加使得平均土壤温度升高,升高幅度介于5.9%~15.1%,灌水矿化度对平均土壤温度存在显著影响,但各处理间差异不显著。生物炭施加提高棉花株高、叶面积指数和地上部干物质量。棉花籽棉产量和水分利用率最大值均出现在B2S2处理,为6526.4 kg·hm-2和2.01 kg·hm-2;最小值均出现在B0S3处理,较B2S2处理分别减少18.50%和26.87%。构建多元回归方程,基于棉花高产、高水分利用率;结合归一化处理和空间分析得出最佳生物炭施加量、灌水矿化度区间分别为26~46 t·hm-2和2.45~3.04 g·L-1

本文引用格式

赖虹雨 , 吕德生 , 朱艳 , 王振华 , 温越 , 宋利兵 , 齐浩 . 生物炭施加对微咸水滴灌棉田土壤水热盐及棉花生长的影响[J]. 干旱区研究, 2024 , 41(2) : 326 -338 . DOI: 10.13866/j.azr.2024.02.15

Abstract

To address the challenges of fresh water shortage and soil quality decline in northern Xinjiang, a field experiment was conducted, investigating the effects of different irrigation water salinity levels and biochar application on the soil hydrothermal conditions, soil salinity, and cotton growth in cotton fields. Four biochar application levels (B0: 0 t·hm-2, B1: 20 t·hm-2, B2: 40 t·hm-2, B3: 60 t·hm-2) and three irrigation water salinity levels (S1: 1 g·L-1, S2: 3 g·L-1, S3: 5 g·L-1) were established. A two-factor completely randomized combination test was used to analyze the effects of these treatments on soil water and salt temperature distribution, cotton growth index, dry matter accumulation, yield, and water use efficiency. The findings indicated that increased biochar and irrigation water salinity levels raised soil water and salt content. Higher biochar application increased the average soil temperature, while irrigation water salinity notably influenced the average soil temperature (P < 0.01). B2S2 treatment increased the cotton plant height, leaf area index, and aboveground dry matter. Optimal yield and water use efficiency occurred in the B2S2 treatment. In contrast, the B0S3 treatment displayed the lowest values, 18.50% and 26.87% lower in yield and water use efficiency, respectively, compared to the B2S2 treatment. A multiple regression equation, combined with normalization and spatial analysis, was established. The optimal biochar amount and irrigation water salinity range based on cotton yield and water use efficiency were 26-46 t·hm-2 and 2.45-3.04 g·L-1, respectively.

参考文献

[1] 石岩, 饶丹. 新疆水资源现状及其可持续利用对策分析[J]. 华北水利水电大学学报(自然科学版), 2015, 36(4): 36-38.
  [Shi Yan, Rao Dan. Analysis of the current situation of water resources in Xinjiang and its sustainable utilization counter measures[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2015, 36(4): 36-38.]
[2] Li C, Lei J, Zhao Y, et al. Effect of saline water irrigation on soil development and plant growth in the Taklimakan Desert Highway shelter belt[J]. Soil & Tillage Research, 2015, 146: 99-107.
[3] 荆继红, 孙继朝, 韩双平, 等. 西北地区地下水资源分布及开发利用状况[J]. 南水北调与水利科技, 2007, 5(5): 54-56.
  [Jing Jihong, Sun Jichao, Han Shuangping, et al. Distribution and development and utilization of groundwater resources in Northwest China[J]. South-to-North Water Transfer and Water Conservancy Science and Technology, 2007, 5(5): 54-56.]
[4] 庞桂斌, 徐征和, 王海霞, 等. 微咸水灌溉对冬小麦光合特征及产量的影响[J]. 灌溉排水学报, 2018, 37(1): 35-41.
  [Pang Guibin, Xu Zhenghe, Wang Haixia, et al. Effects of brackish water irrigation on photosynthetic characteristics and yield of winter wheat[J]. Journal of Irrigation and Drainage, 2018, 37(1): 35-41.]
[5] 马凯, 王振华, 王天宇, 等. 氮盐交互对膜下滴灌棉花产量及品质的影响[J]. 干旱区资源与环境, 2021, 35(11): 165-171.
  [Ma Kai, Wang Zhenhua, Wang Tianyu, et al. Effects of nitrogen-salt interaction on yield and quality of submembrane drip irrigation cotton[J]. Journal of Arid Land Resources and Environment, 2021, 35(11): 165-171.]
[6] 张余良, 陆文龙, 张伟, 等. 长期微咸水灌溉对耕地土壤理化性状的影响[J]. 农业环境科学学报, 2006, 25(4): 969-973.
  [Zhang Yuliang, Lu Wenlong, Zhang Wei, et al. Effects of long-term brackish water irrigation on soil physicochemical properties of cultivated land[J]. Journal of Agro-Environment Science, 2006, 25(4): 969-973.]
[7] 黄明逸, 张展羽, 翟亚明, 等. 咸淡交替灌溉下生物炭对滨海盐渍土及玉米产量的影响[J]. 农业工程学报, 2020, 36(21): 88-96.
  [Huang Mingyi, Zhang Zhanyu, Zhai Yaming, et al. Effects of biochar on yield of coastal saline soil and maize under salty and light alternating irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(21): 88-96.]
[8] Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59: 651-681.
[9] 魏永霞, 张翼鹏, 张雨凤, 等. 黑土坡耕地连续施加生物炭的土壤改良和节水增产效应[J]. 农业机械学报, 2018, 49(2): 284-291.
  [Wei Yongxia, Zhang Yipeng, Zhang Yufeng, et al. Soil improvement and water-saving yield increase effect of continuous application of biochar in cultivated land on black soil slope[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(2): 284-291.]
[10] 张娜, 李佳, 刘学欢, 等. 生物炭对夏玉米生长和产量的影响[J]. 农业环境科学学报, 2014, 33(8): 1569-1574.
  [Zhang Na, Li Jia, Liu Xuehuan, et al. Effects of biochar on growth and yield of summer maize[J]. Journal of Agro-Environment Science, 2014, 33(8):1569-1574.]
[11] Shafaqat A, Muhammad R, Farooq Q M, et al. Biochar soil amendment on alleviation of drought and salt stress in plants: A critical review[J]. Environmental Science and Pollution Research International, 2017, 24(14): 12700-12712.
[12] Huang M Y, Zhang Z Y, Zhai Y M, et al. Effect of straw biochar on soil properties and wheat production under saline water irrigation[J]. Agronomy, 2019, 9(8): 457.
[13] 勾芒芒, 屈忠义, 王凡, 等. 生物炭施用对农业生产与环境效应影响研究进展分析[J]. 农业机械学报, 2018, 49(7): 1-12.
  [Gou Mangmang, Qu Zhongyi, Wang Fan, et al. Research progress analysis on effects of biochar application on agricultural production and environmental effects[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(7): 1-12.]
[14] 唐光木, 葛春辉, 徐万里, 等. 施用生物黑炭对新疆灰漠土肥力与玉米生长的影响[J]. 农业环境科学学报, 2011, 30(9): 797-1802.
  [Tang Guangmu, Ge Chunhui, Xu Wangli, et al. Effects of application of biological black charcoal on fertility and maize growth in gray desert soil in Xinjiang[J]. Journal of Agro-Environment Science, 2011, 30(9): 1797-1802.]
[15] Usman A R A, Al-Wabel M I, Ok Y S, et al. Conocarpus biochar induces changes in soil nutrient availability and tomato growth under saline irrigation[J]. Pedosphere, 2016, 26(1): 27-38.
[16] 陈芳, 张康康, 谷思诚, 等. 不同种类生物质炭及施用量对水稻生长及土壤养分的影响[J]. 华中农业大学学报, 2019, 38(5): 57-63.
  [Chen Fang, Zhang Kangkang, Gu Sicheng, et al. Effects of different types of biochar and application rate on rice growth and soil nutrients[J]. Journal of Huazhong Agricultural University, 2019, 38(5): 57-63.]
[17] 蒋惠, 郭雁君, 张小凤, 等. 生物炭对砂糖桔叶果和土壤理化性状的影响[J]. 生态环境学报, 2017, 26(12): 2057-2063.
  [Jiang Hui, Guo Yanjun, Zhang Xiaofeng, et al. Effects of biochar on physicochemical properties of sugar orange leaf fruit and soil[J]. Ecology and Environmental Sciences, 2017, 26(12): 2057-2063.]
[18] 李燕强, 王振华, 叶含春, 等. 灌溉水矿化度对棉田土壤呼吸速率的影响[J]. 干旱区研究, 2023, 40(3): 392-402.
  [Li Yanqiang, Wang Zhenhua, Ye Hanchun, et al. Effects of irrigation water salinity on soil respiration rate in cotton field[J]. Arid Zone Research, 2023, 40(3): 392-402.]
[19] 邹瑞晗, 吕德生, 王振华, 等. 非灌溉季节施加生物炭对滴灌棉田土壤结构及水热特性的影响[J]. 水土保持学报, 2022, 36(3): 220-227.
  [Zou Ruihan, Lv Desheng, Wang Zhenhua, et al. Effects of biochar application in non-irrigation season on soil structure and hydrothermal characteristics of drip irrigation cotton field[J]. Journal of Soil and Water Conservation, 2022, 36(3): 220-227.]
[20] 王振华, 朱延凯, 张金珠, 等. 水氮调控对轻度盐化土滴灌棉花生理特性与产量的影响[J]. 农业机械学报, 2018, 49(6): 296-308.
  [Wang Zhenhua, Zhu Yankai, Zhang Jinzhu, et al. Effects of water and nitrogen regulation on physiological characteristics and yield of mildly saline soil drip irrigated cotton[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(6): 296-308.]
[21] 辛明亮, 何新林, 吕廷波, 等. 土壤可溶性盐含量与电导率的关系实验研究[J]. 节水灌溉, 2014(5): 59-61.
  [Xin Mingliang, He Xinlin, Lv Tingbo, et al. Experimental study on the relationship between soil soluble salt content and conductivity[J]. Water-saving Irrigation, 2014(5): 59-61.]
[22] 赵嘉涛, 马玉诏, 范艳丽, 等. 生物可降解地膜对棉花产量及水分利用率的影响[J]. 排灌机械工程学报, 2021, 39(1): 96-101.
  [Zhao Jiatao, Ma Yuzhao, Fan Yanli, et al. Effects of biodegradable plastic much on cotton yield and water use efficiency[J]. Journal of Drainage and Irrigation Machinery Engineering, 2021, 39(1): 96-101.]
[23] 邬强, 王振华, 郑旭荣, 等. PBAT生物降解膜覆盖对绿洲滴灌棉花土壤水热及产量的影响[J]. 农业工程学报, 2017, 33(16):135-143.
  [Wu Qiang, Wang Zhenhua, Zheng Xurong, et al. Effects of PBAT biodegradable film mulching on soil water and heat and yield of cotton under drip irrigation in oasis[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(16): 135-143.]
[24] 李万精, 杨广, 雷杰, 等. 不同矿化度(微)咸水膜下滴灌棉田土壤水盐分布及棉花生长特性研究[J]. 干旱地区农业研究, 2022, 40(3): 95-103.
  [Li Wangjing, Yang Guang, Lei Jie, et al. Study on soil water and salt distribution and cotton growth characteristics in drip irrigation cotton field under different salinity (micro) salt water film[J]. Agricultural Research in the Arid Areas, 2022, 40(3): 95-103.]
[25] 吴忠东, 王全九. 入渗水矿化度对土壤入渗特征和离子迁移特性的影响[J]. 农业机械学报, 2010, 41(7): 64-69.
  [Wu Zhongdong, Wang Quanjiu. Effects of salinization degree of infiltration water on soil infiltration characteristics and ion migration characteristics[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(7): 64-69.]
[26] 王世斌, 高佩玲, 赵亚东, 等. 微咸水对生物炭作用下盐碱土水盐运移特征的影响[J]. 排灌机械工程学报, 2022, 40(2):181-187.
  [Wang Shibin, Gao Peiling, Zhao Yadong, et al. Effect of brackish water on water and salt transport characteristics of saline-alkali soil under the action of biochar[J]. Drainage and Irrigation Machinery Engineering Journal, 2022, 40 (2): 181-187.]
[27] 赵子璇, 马娟娟, 孙西欢, 等. 褐土区生物炭施用量对水分入渗规律的影响[J]. 中国农村水利水电, 2022(11): 108-112.
  [Zhao Zixuan, Ma Juanjuan, Sun Xihuan, et al. Effect of biochar application rate on water infiltration in cinnamon soil area[J]. China Rural Water Conservancy and Hydropower, 2022(11): 108-112.]
[28] 王艳阳, 魏永霞, 孙继鹏, 等. 不同生物炭施加量的土壤水分入渗及其分布特性[J]. 农业工程学报, 2016, 32(8): 113-119.
  [Wang Yanyang, Wei Yongxia, Sun Jipeng, et al. Soil water infiltration and distribution characteristics of different biochar applications[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(8): 113-119.]
[29] 吴畏, 高佩玲, 郭祥林, 等. 微咸水与生物炭协同作用对盐碱土入渗特征及水盐运移的影响[J]. 干旱地区农业研究, 2023, 41(2): 160-167.
  [Wu Wei, Gao Peiling, Guo Xianglin, et al. Synergistic effects of brackish water and biochar on infiltration characteristics and water-salt transport in saline-alkali soil[J]. Arid Area Agricultural Research, 2023, 41(2): 160-167.]
[30] 陈浩然. 施用生物质炭对新疆旱区膜下滴灌土壤水盐运移及棉花生长的影响[D]. 杨凌: 西北农林科技大学, 2020.
  [Chen Haoran. Effects of Biochar Application on Water and Salt Transport and Cotton Growth in Submembrane Drip Irrigation Soil in Arid Areas of Xinjiang[D]. Yangling: Northwest A & F University, 2020.]
[31] 王娟, 黄成真, 冯绍元, 等. 生物炭对滨海滩涂区土壤理化特性的影响[J]. 灌溉排水学报, 2022, 41(10): 125-130.
  [Wang Juan, Huang Chengzhen, Feng Shaoyuan, et al. Effects of biochar on soil physical and chemical properties in coastal tidal flats[J]. Journal of Irrigation and Drainage, 2022, 41(10): 125-130.]
[32] 王海霞, 徐征和, 庞桂斌, 等. 微咸水灌溉对土壤水盐分布及冬小麦生长的影响[J]. 水土保持学报, 2017, 31(3): 291-297.
  [Wang Haixia, Xu Zhenghe, Pang Guibin, et al. Effects of brackish water irrigation on soil water and salt distribution and winter wheat growth[J]. Journal of Soil and Water Conservation, 2017, 31(3): 291-297.]
[33] 刘雪艳. 微咸水膜下滴灌对土壤水盐运移及棉花生长的影响[D]. 乌鲁木齐: 新疆农业大学, 2020.
  [Liu Xueyan. Effects of Drip Irrigation under Brackish Water Film on Soil Water and Salt Transport and Cotton Growth[D]. Urumqi: Xinjiang Agricultural University, 2020.]
[34] 蒋静, 冯绍元, 霍再林, 等. 不同灌溉条件对春玉米农田土壤水盐热分布影响的试验研究[C]// 中国农业工程学会农业水土工程专业委员会, 云南农业大学水利水电与建筑学院. 现代节水高效农业与生态灌区建设(上). 昆明: 云南大学出版社, 2010: 8.
  [Jiang Jing, Feng Shaoyuan, Huo Zailin, et al. Experimental study on the effect of different irrigation conditions on soil salinity heat distribution in spring maize farmland[C]// Agricultural Soil and Water Engineering Committee of China Agricultural Engineering Society, College of Water Conservancy, Hydropower and Architecture, Yunnan Agricultural University. Modern Water-Saving and Efficient Agriculture and Ecological Irrigation Construction (I). Kunming: Yunnan University Press, 2010: 8.]
[35] 张俊鹏, 冯棣, 郑春莲, 等. 咸水灌溉对土壤水热盐变化及棉花产量和品质的影响[J]. 农业机械学报, 2014, 45(9): 161-167.
  [Zhang Junpeng, Feng Di, Zheng Chunlian, et al. Effects of saline water irrigation on soil water, heat and salt changes and cotton yield and quality[J]. Agricultural Machinery Journal, 2014, 45(9): 161-167.]
[36] 李昌见, 屈忠义, 勾芒芒, 等. 生物炭对土壤水肥热效应的影响试验研究[J]. 生态环境学报, 2014, 23(7): 1141-1147.
  [Li Changjian, Qu Zhongyi, Gou Mangmang, et al. Experimental study on the effect of biochar on soil water and fertilizer thermal effect[J]. Ecology and Environmental Sciences, 2014, 23(7): 1141-1147.]
[37] 武玉, 徐刚, 吕迎春, 等. 生物炭对土壤理化性质影响的研究进展[J]. 地球科学进展, 2014, 29(1): 68-79.
  [Wu Yu, Xu Gang, Lv Yinchun, et al. Research progress on effects of biochar on soil physical and chemical properties[J]. Advances in Earth Science, 2014, 29(1): 68-79.]
[38] 高利华, 屈忠义. 膜下滴灌条件下生物质炭对土壤水热肥效应的影响[J]. 土壤, 2017, 49(3): 614-620.
  [Gao Lihua, Qu Zhongyi. Effects of biochar on soil hydrothermal fertilizer effect under submembrane drip irrigation[J]. Soils, 2017, 49(3): 614-620.]
[39] 符云鹏, 刘天, 李耀鑫, 等. 等碳量添加生物炭和秸秆对烟田土壤呼吸及净碳收支的影响[J]. 作物学报, 2023, 49(5): 1386-1396.
  [Fu Yunpeng, Liu Tian, Li Yaoxin, et al. Effects of equal carbon addition of biochar and straw on soil respiration and net carbon budget in tobacco fields[J]. Crop Journal, 2023, 49(5): 1386-1396.]
[40] 宋有玺, 安进强, 何岸镕, 等. 微咸水膜下滴灌对棉花生长发育及其产量的影响研究[J]. 水土保持研究, 2016, 23(1): 128-132.
  [Song Youxi, An Jinqiang, He Angrong, et al. Study on the effect of drip irrigation under brackish water film on cotton growth and development and yield[J]. Research of Soil and Water Conservation, 2016, 23(1): 128-132.]
[41] 高若星, 郭文忠, 韩启彪, 等. 灌溉水盐分对设施番茄生长、产量及品质的影响[J]. 北方园艺, 2018(19): 65-70.
  [Gao Ruoxing, Guo Wenzhong, Han Qibiao, et al. Effects of salinity of irrigation water on growth, yield and quality of tomatoes in facilities[J]. Northern Horticulture, 2018(19): 65-70.]
[42] 郭仁松, 林涛, 徐海江, 等. 微咸水滴灌对绿洲棉田水盐运移特征及棉花产量的影响[J]. 水土保持学报, 2017, 31(1): 211-216.
  [Guo Rensong, Lin Tao, Xu Haijiang, et al. Effects of brackish drip irrigation on water salt transport characteristics and cotton yield in oasis cotton field[J]. Journal of Soil and Water Conservation, 2017, 31(1): 211-216.]
[43] 李思平, 曾路生, 李旭霖, 等. 不同配方生物炭改良盐渍土对小白菜和棉花生长及光合作用的影响[J]. 水土保持学报, 2019, 33(2): 363-368.
  [Li Siping, Zeng Lusheng, Li Xulin, et al. Effects of different formulations of biochar on the growth and photosynthesis of Chinese cabbage and cotton[J]. Journal of Soil and Water Conservation, 2019, 33(2): 363-368.]
[44] Wang G, Xu Z. The Effects of biochar on germination and growth of wheat in different saline-alkali soil[J]. Asian Agricultural Research, 2013, 5(11): 116-119.
[45] 崔佳音, 李秀芳, 吴世清, 等. 生物炭添加对苦咸水灌溉下玉米生长及产量的影响[J]. 节水灌溉, 2022(6): 1-9.
  [Cui Jiayin, Li Xiufang, Wu Shiqing, et al. Effects of biochar addition on growth and yield of maize under brackish water irrigation[J]. Water-saving Irrigation, 2022(6): 1-9.]
[46] 陈温福, 张伟明, 孟军. 农用生物炭研究进展与前景[J]. 中国农业科学, 2013, 46(16): 3324-3333.
  [Chen Wenfu, Zhang Weiming, Meng Jun. Research progress and prospect of agricultural biochar[J]. China Agricultural Sciences, 2013, 46(16): 3324-3333.]
[47] Xie Y X, Dong C, Chen Z Y, et al. Sucessive biochar amendmentafcted crop yield by regulating soil nitrogen functional micobes in wheat-maize rotation farmland[J]. Environmental Research, 2021, 194: 110671.
文章导航

/