水土资源

西藏易贡湖流域地表水水化学特征及其控制因素

  • 邵杰 ,
  • 杨欣杰 ,
  • 陈喜庆 ,
  • 滕超 ,
  • 易锦俊 ,
  • 董美玲 ,
  • 张泽琛 ,
  • 曹军 ,
  • 朱宁 ,
  • 肖登 ,
  • 孙思远 ,
  • 吕菲
展开
  • 1.中国地质调查局自然资源实物地质资料中心,河北 三河 065201
    2.国家川藏铁路技术创新中心,四川 成都 610200
邵杰(1989-),男,硕士,工程师,主要从事水工环地质调查与研究工作. E-mail: shaojie@mail.cgs.gov.cn

收稿日期: 2023-07-13

  修回日期: 2023-11-01

  网络出版日期: 2024-03-11

基金资助

中国地质调查局地质调查项目(DD20230138);中国地质调查局地质调查项目(DD20221814);中国地质调查局地质调查项目(DD20221814-01);中国地质调查局地质调查项目(DD20221814-02);国家地下水监测工程运行与维护(河北省秦皇岛地下水与海平面综合监测站运行维护(2023))

Hydrochemical characteristics and control factors of surface water in the Yigong Lake Basin, Tibet

  • SHAO Jie ,
  • YANG Xinjie ,
  • CHEN Xiqing ,
  • TENG Chao ,
  • YI Jinjun ,
  • DONG Meiling ,
  • ZHANG Zechen ,
  • CAO Jun ,
  • ZHU Ning ,
  • XIAO Deng ,
  • SUN Siyuan ,
  • LYU Fei
Expand
  • 1. Cores and Samples Center of Natural&Resources (CSCNR), China Geological Survey(CGS), Sanhe 065201, Hebei, China
    2. National Sichuan-Tibet Railway Technology Innovation Center, Chengdu 610200, Sichuan, China

Received date: 2023-07-13

  Revised date: 2023-11-01

  Online published: 2024-03-11

摘要

为探究易贡湖流域地表水水化学特征及其控制因素,以藏东南易贡湖流域为研究对象,采集了26组地表水样,绘制了水样点主要离子线性变化趋势图、Gibbs图及Piper三线图等,运用相关分析、线性趋势分析、数理统计和离子比等方法。分析了研究区地表水主要离子特征及其控制因素,揭示了研究区地表水水中的主要物质来源。结果显示:易贡湖流域地表水阳离子主要为Ca2+、Mg2+,K+和Na+含量较低,4种阳离子的含量关系为:Ca2+>Mg2+>Na+>K+,阴离子主要为 H C O 3 - S O 4 2 -和Cl- N O 3 -和F-含量较低,阴离子含量关系为: H C O 3 -> S O 4 2 ->Cl-> N O 3 ->F-,H2SiO3浓度值变化平稳,围绕6.9 mg·L-1上下波动变化,pH值沿程变化平稳,在7.84~8.37之间,水体属于弱碱性。Ca2+、Mg2+ H C O 3 -是构成易贡湖流域地表水中的3种主要离子,水化学类型以HCO3-Ca·Mg或HCO3-Ca型为主。岩石溶滤作用是主要控制因素,阳离子交替吸附作用和蒸发浓缩作用均相当微弱,人为活动影响十分有限。

本文引用格式

邵杰 , 杨欣杰 , 陈喜庆 , 滕超 , 易锦俊 , 董美玲 , 张泽琛 , 曹军 , 朱宁 , 肖登 , 孙思远 , 吕菲 . 西藏易贡湖流域地表水水化学特征及其控制因素[J]. 干旱区研究, 2024 , 41(2) : 250 -260 . DOI: 10.13866/j.azr.2024.02.08

Abstract

This study examines the hydrochemical characteristics and controlling factors of surface water in the Yigong Lake Basin, southeast Tibet, through the collection of 26 groups of surface water samples. Linear trend diagrams, Gibbs diagrams, and Piper diagrams of the main ions in the water sample points were drawn. Moreover, correlation analysis, linear trend analysis, mathematical statistics, and ion ratio were used to analyze the surface water’s main ion characteristics and controlling factors in the study area, unveiling its material sources. The results show that the predominant cations in the Yigong Lake Basin surface area were Ca2+ and Mg2+, while K+ and Na+ levels were relatively low. The hierarchy of cation content was Ca2+ > Mg2+ > Na+ > K+. Among anions, H C O 3 - , S O 4 2 - ,and Cl- dominated, with relatively low levels of N O 3 - and F-. The hierarchy of anion content was H C O 3 -> S O 4 2 ->Cl- > N O 3 ->F-, and the concentration value of H2SiO3 maintained a steady fluctuation around 6.9 mg·L-1. The pH value consistently ranged between 7.84 and 8.37, indicating weak alkalinity. The three main ions in the surface water of the Yigong Lake Basin were Ca2+, Mg2+, and H C O 3 -, and the hydrochemical types were mainly HCO3-Ca·Mg or HCO3-Ca. Rock leaching was the primary controlling factor, with minimal influence from cation-alternating adsorption, evaporation, or human activities on water concentration.

参考文献

[1] 张丽, 陈永金, 刘加珍, 等. 东平湖水化学特征及成因分析[J]. 环境化学, 2021, 40(5): 1490-1502.
  [Zhang Li, Chen Yongjin, Liu Jiazhen, et al. Analysis on hydrochemical characteristics and causes of Dongping Lake[J]. Environmental Chemistry, 2021, 40(5): 1490-1502.]
[2] 刘智琦, 潘保柱, 韩谞, 等. 青藏高原湖泊水环境特征及水质评价[J]. 环境科学, 2022, 43(11): 5073-5083.
  [Liu Zhiqi, Pan Baozhu, Han Xu, et al. Water environmental characteristics and water quality assessment of lakes in Tibetan Plateau[J]. Enviromental Science, 2022, 43(11): 5073-5083.]
[3] 吴通航, 刘海燕, 张卫民, 等. 鄱阳湖流域赣江下游水化学特征及人类健康风险评价[J]. 现代地质, 2022, 36(2): 427-438.
  [Wu Tonghang, Liu Haiyan, Zhang Weimin, et al. Hydrocheemical characteristics and human health risk assessment in downstream Ganjiang River of the Poyang Lake Basin[J]. Geoscience, 2022, 36(2): 427-438.]
[4] 寇永朝, 华琨, 李洲, 等. 泾河支流地表水地下水的水化学特征及其控制因素[J]. 环境科学, 2018, 39(7): 3142-3149.
  [Kou Yongchao, Hua Kun, Li Zhou, et al. Major ionic features and their possible controls in the surface water and groundwater of the Jinghe river[J]. Environmental Science, 2018, 39(7): 3142-3149.]
[5] Chunlu J, Chenghong J, Junzhen Z, et al. Water chemistry and stable isotope characteristics of subsidence lakes in coal mining areas, Eastern China[J]. Environmental Science and Pollution Research International, 2023, 30(15): 67-72.
[6] 邵杰, 李瑛, 滕超, 等. 新疆赛里木湖水化学及氢氧同位素特征分析[J]. 安徽农业科学, 2022, 50(22): 42-44.
  [Shao Jie, Li Ying, Teng Chao, et al. Hydrochemistry and hydrogen and oxygen isotopic characteristics of Sayram lake in Xinjiang Autonomous Region[J]. Journal of Anhui Agricultural Science, 2022, 50(22): 42-44.]
[7] Pant P P, Zhang F, Rehman F U, et al. Spatiotemporal variations of hydrogeochemistry and its controlling factors in the Gandaki River Basin, Central Himalaya Nepal[J]. Science of the Total Environment, 2018, 622: 770-782.
[8] Fu C C, Li X Q, Ma J F, et al. A hydrochemistry and multi-isotopic study of groundwater origin and hydrochemical evolution in the middle reaches of the Kuye River Basin[J]. Applied Geochemistry, 2018, 98: 82-93.
[9] Mohanty A K, Rao V V S G. Hydrogeochemical, seawater intrusion and oxygen isotope on a coastal region in the Puri District of Odisha, India[J]. Catena, 2019, 172: 558-571.
[10] Yang Z Y, Huang P H, Ding F F. Groundwater hydrogeochemical mechanisms and the connectivity of multilayer aquifers in a coal mining region[J]. Mine Water and the Environment, 2020, 39(4): 808-822.
[11] 白占学, 马剑飞. 亚洲水塔青藏高原[J]. 自然资源科普与文化, 2021(1): 24-27.
  [Bai Zhanxue, Ma Jianfei. Asian water tower the Tibetan Plateau[J]. Scientific and Cultural Popularization of Natural Resources, 2021(1): 24-27.]
[12] 闫露霞. 青藏高原湖泊与湿地水化学特征及其物质来源[D]. 兰州: 西北师范大学, 2019.
  [Yan Luxia. Hydrochemical Characteristics and Material Sources of Lakes and Wetlands in Qinghai-Tibet Plateau[D]. Lanzhou: Northwest Normal University, 2019.]
[13] 王鹏, 尚英男, 沈立成, 等. 青藏高原淡水湖泊水化学组成特征及其演化[J]. 环境科学, 2013, 34(3): 874-881.
  [Wang Peng, Shang Yingnan, Shen Licheng, et al. Characteristics and evolution of hydrochemical compositions of freshwater lake in Tibetan Plateau[J]. Environmental Science, 2013, 34(3): 874-881.]
[14] 王海雷, 郑绵平. 青藏高原湖泊水化学与盐度的相关性初步研究[J]. 地质学报, 2010, 54(10): 1517-1522.
  [Wang Hailei, Zheng Mianping. Preliminary study of the correlation between hydrochemistry and salinity of lakes in the Qinghai-TibetanPlateau[J]. Acta Geologica Sinica, 2010, 54(10): 1517-1522.]
[15] 张涛, 王明国, 张智印, 等. 然乌湖流域地表水水化学特征及控制因素[J]. 环境科学, 2020, 41(9): 4003-4010.
  [Zhang Tao, Wang Mingguo, Zhang Zhiyin, et al. Hydrochemical characteristics and possible controls of the surface water in Ranwu Lake Basin[J]. Environmental Science, 2020, 41(9): 4003-4010.]
[16] 王利杰, 曾辰, 王冠星, 等. 西藏山南地区沉错湖泊与径流水化学特征及主控因素初探[J]. 干旱区地理, 2017, 40(4): 737-745.
  [Wang Lijie, Zeng Chen, Wang Guanxing, et al. Chemical characteristics and impact factors of the Drem-tso lake and supplying runoff in the Southern Tibet[J]. Arid Land Geography, 2017, 40(4): 737-745.]
[17] 郑绵平, 刘喜方. 青藏高原盐湖水化学及其矿物组合特征[J]. 地质学报, 2010, 84(11): 1585-1600.
  [Zheng Mianping, Liu Xifang. Hydrochemistry and minerals assemblages of salt lakes in the Qinghai Tibet Plateau, China[J]. Acta Geologica Sinica, 2010, 84(11): 1585-1600.]
[18] 李承鼎, 康世昌, 刘勇勤, 等. 西藏湖泊水体中主要离子分布特征及其对区域气候变化的响应[J]. 湖泊科学, 2016, 28(4): 743-754.
  [Li Chengding, Kang Shichang, Liu Yongqin, et al. Distribution of major ions in waters and their response to regional climatic change in Tibetan lakes[J]. Journal of Lake Sciences, 2016, 28(4): 743-754.]
[19] 唐金平, 张强, 胡漾, 等. 湔江冲洪积扇地下水化学特征及控制因素分析[J]. 环境科学, 2019, 40(7): 3089-3098.
  [Tang Jinping, Zhang Qiang, Hu Yang, et al. Groundwater chemical characteristics and analysis of their controlling factors in an alluvial fan of Jianjiang River[J]. Environmental Science, 2019, 40(7): 3089-3098.]
[20] Wu W H. Hydrochemistry of inland rivers in the North Tibetan Plateau: Constraints and weathering rate estimation[J]. Science of the Total Environment, 2016, 541: 468-482.
[21] 袁浩, 郭长宝, 吴瑞安, 等. 西藏易贡高位远程滑坡研究进展与展望[J]. 地质通报, 2023, 42(10): 1757-1773.
  [Yuan Hao, Guo Changbao, Wu Rui’an, et al. Research progress and prospects of the giant Yigong long run-out landslide, Tibetan Plateau, China[J]. Geological Bulletin of China, 2023, 42(10): 1757-1773.]
[22] 王哲, 赵超英, 刘晓杰, 等. 西藏易贡滑坡演化光学遥感分析与InSAR形变监测[J]. 武汉大学学报(信息科学版), 2021, 46(10): 1569-1578.
  [Wang Zhe, Zhao Chaoying, Liu Xiaojie, et al. Evolution analysis and deformation monitoring of Yigong Landslide in Tibet with optical remote sensing and InSAR[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10): 1569-1578.]
[23] Zhou J W, Cui P, Hao M H. Comprehensive analyses of the initiation and entrainment processes of the 2000 Yigong catastrophic landslide in Tibet, China[J]. Landslides, 2016, 13(1): 43-50.
[24] 张衡, 徐团伟, 裴顺平, 等. 利用分布式光纤声传感设备开展青藏高原易贡湖浅层结构探测[J]. 地学前缘, 2021, 28(6): 227-234.
  [Zhang Heng, Xu Tuanwei, Pei Shunping, et al. Application of distributed acoustic sensing in structural investigation of Lake Yigong in Tibet[J]. Earth Science Frontiers, 2021, 8(6): 227-234.]
[25] 刘旭东, 张瑞, 万宝. 基于Piper-PCA-MLP神经网络的矿井涌水水源识别方法研究[J]. 中国煤炭地质, 2022, 34(7): 50-55.
  [Liu Xudong, Zhang Rui, Wan Bao. Study on mine water inrush source discrimination method based on Piper-PCA-MLP Neural Network[J]. Coal Geology of China, 2022, 34(7): 50-55.]
[26] 张敏, 董少刚, 张文琦, 等. 红碱淖流域湖泊-地下水系统水化学特征及成因[J]. 干旱区资源与环境, 2022, 36(5): 102-109.
  [Zhang Min, Dong Shaogang, Zhang Wenqi, et al. Hydrochemical characteristics and genesis of lake-groundwater system in the Hongjiannao Basin[J]. Journal of Arid Land Resources and Environment, 2022, 36(5): 102-109.]
[27] 杨海娇, 魏加华, 任倩慧. 柴达木盆地典型流域地表水-地下水转化关系及水化学特征[J]. 干旱区研究, 2022, 39(5): 1543-1554.
  [Yang Haijiao, Wei Jiahua, Ren Qianhui. Interaction between surface water and groundwater and hydrochemical characteristics in the typical watersheds of the Qaidam Basin[J]. Arid Zone Research, 2022, 39(5): 1543-1554.]
[28] Li C Z, Li B H, Bi E P. Characteristics of hydrochemistry and nitrogen behavior under long-term managed aquifer recharge with reclaimed water: a case study in North China[J]. Science of the Total Environment, 2019, 668: 1030-1037.
[29] Cui B L, Li X Y. Runoff processes in the Qinghai Lake Basin, Northeast Qinghai-Tibet Plateau, China: Insights from stable isotope and hydrochemistry[J]. Quaternary International, 2015, 380-381: 123-132.
[30] Wang W H, Wu T H, Zhao L, et al. Hydrochemical characteristics of ground ice in permafrost regions of the Qinghai-Tibet Plateau[J]. Science of the Total Environment, 2018, 626: 366-376.
[31] Qi H H, Ma C M, He Z K, et al. Lithium and its isotopes as tracers of groundwater salinization: A study in the southern coastal plain of Laizhou Bay, China[J]. Science of the Total Environment, 2019, 650: 878-890.
[32] 吕婕梅, 安艳玲, 吴起鑫, 等. 贵州清水江流域丰水期水化学特征及离子来源分析[J]. 环境科学, 2015, 36(5): 1565-1572.
  [Lü Jiemei, An Yanling, Wu Qixin, et al. Hydrochemical characteristics and sources of Qingshuijiang River Basin at wet season in Guizhou Province[J]. Environmental Science, 2015, 36(5): 1565-1572.]
[33] 王诗语, 孙从建, 陈伟. 典型西北山地鄄绿洲系统不同水体水化学特征及其水力关系分析[J]. 环境科学, 2023, 44(3): 1416-1428.
  [Wang Shiyu, Sun Congjian, Chen Wei. Analysis of water chemistry characteristics and hydraulic relationships of different water bodies in typical mountain-oasis systems in the Northwest Inland Area[J]. Environmental Science, 2023, 44(3): 1416-1428.]
[34] 李祥志, 曹文庚, 李英, 等. 含氟地下水的危害、治理技术现状与进展[J/OL]. 中国地质:1-33. [2023-10-08].
  [Li Xiangzhi, Cao Wengeng, Li Ying, et al. Harmfulness of fluorine-bearing groundwater and its current situation and progress of treatment technology[J/OL]. Geology in China:1-33. [2023-10-08].]
[35] Li Z J, Yang Q C, Yang Y S, et al. Isotopic and geochemical interpretation of groundwater under the influences of anthropogenic activities[J]. Journal of Hydrology, 2019, 576: 685-697.
[36] Zhao G, Li W, Li F, et al. Hydrochemistry of waters in snowpacks, lakes and streams of Mt. Dagu, eastern of Tibet Plateau[J]. Science of the Total Environment, 2018, 610-611: 641-650.
[37] 艾力哈木·艾克拉木, 周金龙, 张杰, 等. 伊犁河谷西北部地下水化学特征及成因分析[J]. 干旱区研究, 2021, 38(2): 504-512.
  [Ailihamu Aikelamu, Zhou Jinlong, Zhang Jie, et al. Chemical characteristics and genesis analysis of groundwater in northwest Yili River Valley[J]. Arid Zone Research, 2021, 38(2): 504-512.]
[38] 刘亚磊. 干旱内陆盆地地下水咸化与蒸发-累盐相互作用机理研究[D]. 武汉: 中国地质大学, 2019.
  [Liu Yalei. Groundwater Salinization Mechanism and Interaction Processes of the Evaporation and Salt Accumulation in An Arid Inland Basin[D]. Wuhan: China University of Geosciences, 2019.]
[39] 王明国, 李敬杰, 梁倩. 藏东热曲水化学特征及物质来源研究[J]. 人民长江, 2023, 54(2): 120-126.
  [Wang Mingguo, Li Jingjie, Liang Qian. Hydrochemical characteristics and material sources of Requ River in eastern Tibet[J]. People’s Yangtze River, 2023, 54(2): 120-126.]
[40] 刘元晴, 周乐, 吕琳, 等. 牟汶河中上游孔隙水化学特征及控制因素[J]. 环境科学, 2023, 44(3): 1429-1439.
  [Liu Yuanqing, Zhou Le, Lü Lin, et al. Hydrochemical characteristics and control factors of pore-water in the middle and upper reaches of Muwen River[J]. Environmental Science, 2023, 44(3): 1429-1439.]
[41] Gan Y Q, Zhao K, Deng Y M, et al. Groundwater flow and hydrogeochemical evolution in the Jianghan Plain, Central China[J]. Hydrogeology Journal, 2018, 26(5): 1609-1623.
[42] Thomas J, Joseph S, Thrivikramji K P. Hydrochemical variations of a tropical mountain river system in a rain shadow region of the southern Western Ghats, Kerala, India[J]. AppliedGeochemistry, 2015, 63: 456-471.
[43] 孙厚云, 孙晓明, 卫晓锋, 等. 河北承德偏硅酸矿泉水成因模式: 岩石风化与水岩作用证据[J]. 中国地质, 2022, 49(4): 1088-1113.
  [Sun Houyun, Sun Xiaoming, Wei Xiaofeng, et al. Formation mechanism of metasilicate mineral water in Chengde, Hebei Province: Evidence from rock weathering and water-rock interaction[J]. Geology in China, 2022, 49(4): 1088-1113.]
[44] 丁启振, 雷米, 周金龙, 等. 博尔塔拉河上游河谷地区水化学特征及水质评价[J]. 干旱区研究, 2022, 39(3): 829-840.
  [Ding Qizhen, Lei Mi, Zhou Jinlong, et al. An assessment of groundwater,surface water, and hydrochemical characteristics in the upper valley of the Bortala River[J]. Arid Zone Research, 2022, 39(3): 829-840.]
[45] 陶兰初, 寸得欣, 涂春霖, 等. 珠江源块泽河流域地表水水化学特征及控制因素[J]. 环境科学, 2023, 44(11): 6025-6037.
  [Tao Lanchu, Cun Dexin, Tu Chunlin, et al. Hydrochemical characteristics and control factors of surface water in Kuaize River Basin at the Upper Pearl River[J]. Environmental Science, 2023, 44(11): 6025-6037.]
[46] 赵春红, 申豪勇, 王志恒, 等. 汾河流域地表水水化学同位素特征及其影响因素[J]. 环境科学, 2022, 43(10): 4440-4448.
  [Zhao Chunhong, Shen Haoyong, Wang Zhiheng, et al. Hydrochemical and isotopic characteristics in the surface water of the Fenhe river basin and influence factors[J]. Environmental Science, 2022, 43(10): 4440-4448.]
[47] Xiaolan W, Dilinuer A, Saimire T. Analysis of the hydrochemical characteristics and genesis of Bosten Lake, China[J]. Sustainability, 2023, 15(5): 71-85.
[48] 韩朝辉, 朱一龙, 赵超, 等. 汉中盆地西侧土关铺—大安镇一带山区泉水水化学特征及成因机制[J]. 吉林大学学报(地球科学版), 2022, 52(6): 1996-2004.
  [Han Zhaohui, Zhu Yilong, Zhao Chao, et al. Chemical characteristics and genetic mechanism of spring water in the mountain area of Tuguanpu and Da’an Town, West Hanzhong Basin[J]. Journal of Jilin University(Earth Science Edition), 2022, 52(6): 1996-2004.]
[49] 高宗军, 万志澎, 贺可强, 等. 大汶河流域中上游地区岩溶地下水水化学特征及其控制因素分析[J]. 地质科技通报, 2022, 41(5): 264-272.
  [Gao Zongjun, Wan Zhipeng, He Keqiang, et al. Hydrochemical characteristics and controlling factors of karst groundwater in middle and upper reaches of Dawen River basin[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 264-272.]
[50] Maurya P, Kumari R, Mukherjee S. Hydrochemistry in integration with stable isotopes(δ18O and δD) to assess seawater intrusion in coastal aquifers of Kachchh district, Gujarat, India[J]. Journal of Geochemical Exploration, 2019, 196: 42-56.
[51] 郭艺, 甘甫平, 闫柏琨, 等. 青藏高原西南地区地表水水化学同位素特征及控制因素分析[J]. 华北水利水电大学学报(自然科学版), 2022, 43(6): 96-107.
  [Guo Yi, Gan Fuping, Yan Baikun, et al. Hydrochemical-isotopic characteristics of surface water and its controlling factors in southwest Tibetan Plateau[J]. Journal of North China University of Water Resources and Electric Power(Natural Science Edition), 2022, 43(6): 96-107.]
[52] 李敬杰, 连晟, 王明国, 等. 藏东多曲河流域锶富集水化学特征及控制因素[J/OL]. 环境科学: 1-14. [2023-10-08].
  [Li Jingjie, Lian Sheng, Wang Mingguo, et al. Hydrochemical characteristics and control factors of strontium enrichment of the Duoqu River Basin in Eastern Tibet[J/OL]. Environmental Science: 1-14. [2023-10-08].]
[53] 鲁涵, 曾妍妍, 周金龙, 等. 喀什噶尔河下游平原区地下水咸化特征及成因分析[J]. 环境科学, 2022, 43(10): 4459-4469.
  [Lu Han, Zeng Yanyan, Zhou Jinlong, et al. Characteristics and origin analysis of groundwater salinity in the lower plain area of Kashgar River[J]. Environmental Science, 2022, 43(10): 4459-4469.]
[54] 李冬丽, 贺海波, 张雪程, 等. 柴达木盆地东北部巴音河小流域水化学特征及来源[J]. 地球科学与环境学报, 2023, 45(3): 749-759.
  [Li Dongli, He Haibo, Zhang Xuecheng, et al. Hydrochemical characteristics and sources of small Bayin River watershed in the Northeast of Qaidam Basin, China[J]. Journal of Earth Sciences and Environment, 2023, 45(3): 749-759.]
[55] Jiutan L, Zongjun G, Jianguo F, et al. Identification of the hydrochemical features, genesis, water quality and potential health hazards of groundwater in Dawen River Basin, North China[J]. Ecological Indicators, 2023, 149: 52-61.
[56] Ding H, Penghui L, Chen H, et al. Eutrophication and watershed characteristics shape changes in dissolved organic matter chemistry along two river-estuarine transects[J]. Water Research, 2022, 214: 71-83.
文章导航

/