天气与气候

青海东北部一次典型冰雹过程的观测分析

  • 王启花 ,
  • 林春英 ,
  • 刘潇 ,
  • 张莉燕 ,
  • 赵占秀 ,
  • 张博越 ,
  • 龚静
展开
  • 1.青海省气象灾害防御技术中心,青海 西宁 810001
    2.山西省人工增雨防雷技术中心,山西 太原 030032
    3.海北州气象局,青海 海晏 812200
王启花(1991-), 女, 工程师, 主要从事云降水物理与人工影响天气研究. E-mail: wangqhnuist@sina.com

收稿日期: 2023-03-24

  修回日期: 2023-11-07

  网络出版日期: 2024-03-11

基金资助

青海省科技厅研究项目(2023-ZJ-727);国家自然科学基金项目(42165008);青海省气象局重点科研项目(QXZD2022-12)

Observational analysis of a hailstorm event in Northeast Qinghai

  • WANG Qihua ,
  • LIN Chunying ,
  • LIU Xiao ,
  • ZHANG Liyan ,
  • ZHAO Zhanxiu ,
  • ZHANG Boyue ,
  • GONG Jing
Expand
  • 1. Weather Modification Office of Qinghai Province, Xining 810001, Qinghai, China
    2. Shanxi Artificial Precipitation Enhancement and Lightning Protection Technical Center, Taiyuan 030032, Shanxi, China
    3. Haibei Meteorological Bureau, Haiyan 812200, Qinghai, China

Received date: 2023-03-24

  Revised date: 2023-11-07

  Online published: 2024-03-11

摘要

青海东北部是青海省主要的农作物生产区、也是冰雹高发区和灾害影响的高风险区,冰雹预报预警和人工防雹作业是降低冰雹灾害的重要手段,掌握冰雹发生时各监测资料的变化特征是提高冰雹预报能力、尽早开展人工防雹作业的前提。2021年6月29日青海东北部出现了一次大范围的冰雹天气过程,利用多普勒天气雷达、雨滴谱资料,结合高空和地面常规气象资料,对此次冰雹天气过程进行了分析。结果表明:青海东北部地区高空有冷平流输送,地面增温明显,导致层结不稳定,是产生此次冰雹的天气背景。平安地区降雹阶段平均雨滴谱和速度谱均呈多峰分布,人工观测的平安冰雹最大直径和雨滴谱仪观测的相差不大,说明雨滴谱仪能很好的观测到冰雹粒子,并且能确定最大冰雹出现的时间。雹云发展大致经历了发生、跃增、降雹和消亡等阶段,降雹前低层雷达反射率因子出现明显的“V”字型入流缺口;雹云成熟阶段具有明显的有界弱回波区结构,中低层有明显的偏南气流入流,且此时径向速度图上雹云有明显的“0线”,“0线”垂直向上,穿过悬垂回波和有界弱回波区域上部,指向冰雹云顶。此次冰雹个例的分析,对青海东北部冰雹预报具有重要的指导意义,冰雹发生前各要素变化特征是后期科学指导防雹作业点适时、适量开展人工防雹作业的重要判据。

本文引用格式

王启花 , 林春英 , 刘潇 , 张莉燕 , 赵占秀 , 张博越 , 龚静 . 青海东北部一次典型冰雹过程的观测分析[J]. 干旱区研究, 2024 , 41(2) : 200 -210 . DOI: 10.13866/j.azr.2024.02.03

Abstract

The Northeast of Qinghai Province is the key area for crop production and but is highly susceptible to hail. Hail forecasting, early warning, and artificial anti-hail operations are crucial strategies for reducing hail disasters. Understanding the features of hail monitoring data is fundamental to improving hail forecasting capabilities and initiating timely performing hail suppression measures. The hailstorm occurrence on June 29, 2021, Northeast of Qinghai, was analyzed using Doppler radar data, raindrop spectrum data, and high and ground data. The results revealed extreme unstable atmosphere stratification due to cold advection transportation at the upper levels, coupled with obvious temperature increases on the ground in this region, which is the weather background of this hailstorm process. During the hailstorm, the average raindrop spectrum and velocity spectrum at Pingan Station exhibited multipeak distribution. Differences between the maximum diameter of the Pingan hailstorm observed artificially and the raindrop spectrometer were insignificant, indicating the raindrop spectrometer’s efficacy in observing hail particles and determining the time of maximum hail occurrence. The developmental stages of the hail cloud were identified, encompassing occurrence, jump, hail formation, and extinction. There was an obvious “V” shaped inflow gap in the low-level radar reflectivity factor before the hail. In the mature stage, the hail cloud displayed a noticeable bounded weak echo area, with obvious southerly inflow in the middle and lower layers. The radial velocity map depicted a discernible “0 line” in the hail cloud, pointing vertically upward through the overhanging echo and bounded weak echo region, indicating the top of the hail cloud. The research results have important guiding significance for hail forecasting Northeast of Qinghai. Moreover, the characteristics of various elements preceding hail occurrence serve as important criteria for scientifically identifying sites and conducting timely and appropriate artificial hail suppression operations.

参考文献

[1] 赵先丽, 李丽光, 贾庆宇, 等. 1988—2007年辽宁主要农业气象灾害分析[J]. 气象与环境学报, 2009, 25(2): 33-37.
  [Zhao Xianli, Li Liguang, Jia Qingyu, et al. Analysis of main agrometeorological disasters from 1988 to 2007 in Liaoning Province[J]. Journal of Meteorology and Environment, 2009, 25(2): 33-37.]
[2] 龚静, 王青川. 青海省东部农业区高炮人工防雹效果评估[J]. 青海科技, 2008, 14(6): 36-39.
  [Gong Jing, Wang Qingchuan. Evaluation of hail suppression effect of antiaircraft artillery in eastern agricultural area of Qinghai Province[J]. Qinghai Science and Technology, 2008, 14(6): 36-39.]
[3] 孙鸿烈, 郑度, 姚檀栋, 等. 青藏高原国家生态安全屏障保护与建设[J]. 地理学报, 2012, 67(1): 3-12.
  [Sun Honglie, Zheng Du, Yao Tandong, et al. Protection and construction of the national ecological security shelter zone on Tibetan Plateau[J]. Acta Geographica Sinica, 2012, 67(1): 3-12.]
[4] 周嵬, 张强, 康凤琴. 我国西北地区降雹气候特征及若干研究进展[J]. 地球科学进展, 2005, 20(9):1029 -1036.
  [Zhou Wei, Zhang Qiang, Kang Fengqin. Recent advancements of hail research in Northwest China[J]. Advances in Earth Science, 2005, 20(9): 1029 -1036.]
[5] Johns R H, Doswell III C A. Severe local storms forecasting[J]. Weather Forecast, 1992, 7: 588-612.
[6] 刘晓璐, 刘建西, 张世林, 等. 基于探空资料因子组合分析方法的冰雹预报[J]. 应用气象学报, 2014, 25(2): 168-175.
  [Liu Xiaolu, Liu Jianxi, Zhang Shilin, et al. Hail forecast based on factor combination analysis method and sounding data[J]. Journal of Applied Meteorological Science, 2014, 25(2): 168-175.]
[7] 王艳兰, 王娟, 伍静, 等. 桂林市2019年“3.21”极端大风与“4.24”致灾冰雹过程特征对比分析[J]. 热带气象学报, 2021, 37(2): 175-785.
  [Wang Yanlan, Wang Juan, Wu Jing, et al. Comparative analysis of characteristics of “3.21” extreme gale and “4.24” hailstrom in Guilin in 2019[J]. Journal of Tropical Meteorology, 2021, 37(2): 175-185.]
[8] 张腾飞, 段旭, 鲁亚斌, 等. 云南一次强对流冰雹过程的环流及雷达回波特征分析[J]. 高原气象, 2006, 25(3): 531-538.
  [Zhang Tengfei, Duan Xu, Lu Yabin, et al. Circulation background for a severe convective hailstorm weather process in Yunnan and its dopplar radar echo features[J]. Plateau Meteorology, 2006, 25(3): 531-538.]
[9] 王培涛, 王凤娇, 张婷婷. 山东滨州市冰雹天气分型和预报方法研究[J]. 沙漠与绿洲气象, 2019, 13(3): 33-40.
  [Wang Peitao, Wang Fengjiao, Zhang Tingting. Study on classification of synoptic systems and forecasting method of hail in Binzhou Shandong Province[J]. Desert and Oasis Meteorology, 2019, 13(3): 33-40.]
[10] 沈树勤, 顾锋峰. 降雹前地面要素场的合成分析和冰雹的临近预报[J]. 气象, 1988, 14(6): 5-8.
  [Shen Shuqin, Gu Fengfeng. A composite analysis of surface factors in advanced of hail shooting and the nowcasting of hail[J]. Meteorological Monthly, 1988, 14(6): 5-8.]
[11] 段艺萍, 刘寿东, 刘黎平, 等. 新一代天气雷达三维组网产品在人工防雹的应用[J]. 高原气象, 2014, 33(5): 1426-1439.
  [Duan Yiping, Liu Shoudong, Liu Liping, et al. Application of cinrad mosaic products on artificial hail suppression[J]. Plateau Meteorology, 2014, 33(5): 1426-1439.]
[12] 陶岚, 管理, 孙敏, 等. 双线偏振多普勒雷达对一次降雹超级单体发展减弱阶段的演变分析[J]. 气象科学, 2019, 39(5): 685-697.
  [Tao Lan, Guan Li, Sun Min, et al. Evolution analysis of a hail-producing supercell using dual polarization doppler radar[J]. Journal of the Meteorological Sciences, 2019, 39(5): 685-697.]
[13] 吴剑坤, 俞小鼎. 强冰雹天气的多普勒天气雷达探测与预警技术综述[J]. 干旱气象, 2009, 27(3): 197-206.
  [Wu Jiankun, Yu Xiaoding. Review of detection and warning methods for sever hail events by doppler weather radars[J]. Journal of Arid Meteorology, 2009, 27(3): 197-206.]
[14] 曹舒娅, 孙伟, 韦芬芬, 等. 双偏振雷达在江苏“7.6”降雹过程中的应用分析[J]. 大气科学学报, 2021, 44(4): 549-557.
  [Cao Shuya, Sun Wei, Wei Fenfen, et al. Study of “7.6” hail event in Jiangsu based on dual-polarization weather radar observations[J]. Transactions of Atmospheric Sciences, 2021, 44(4): 549-557.]
[15] 孙伟, 曹舒娅, 沈建. 基于多源探测资料的“4.12”非典型冰雹特征分析[J]. 热带气象学报, 2021, 37(2): 218-232.
  [Sun Wei, Cao Shuya, Shen Jian. Characteristic analysis of “4.12” atypical hail based on multi-source data[J]. Journal of Tropical Meteorology, 2021, 37(2): 218-232.]
[16] 张芳, 虎文珺, 晁剑. 青海省东部农业区冰雹天气特征分析及预警指标研究[J]. 沙漠与绿洲气象, 2020, 14(1): 63-71.
  [Zhang Fang, Hu Wenjun, Chao Jian. Analysis of hail weather characteristics and early warning indexes in agricultural regions in eastern Qinghai Province[J]. Desert and Oasis Meteorology, 2020, 14(1): 63-71.]
[17] 朱平, 肖建设, 伏洋. 青藏高原东北部冰雹和雷雨预警的风暴单体识别特征对比分析[J]. 干旱区研究, 2012, 29(6): 941-948.
  [Zhu Ping, Xiao Jianshe, Fu Yang. Analysis on identification characters of storm cells for early warning of hail and thunder storms in the Northeast Qinghai Tibetan Plateau[J]. Arid Zone Research, 2012, 29(6): 941-948.]
[18] 赵瑞金, 杨德保, 董保华, 等. 石家庄地区冰雹天气环境条件的多普勒天气雷达资料分析[J]. 气象科学, 2008, 28(6): 689-696.
  [Zhao Ruijin, Yang Debao, Dong Baohua, et al. The analysis of environment condition of hail in Shijiazhuang using doppler weather radar products[J]. Journal of the Meteorological Sciences, 2008, 28(6): 689-696.]
[19] 李嘉, 马中元, 郑媛媛, 等. 一次强飑线过程多尺度回波系统特征分析[J]. 气象科学, 2022, 42(5): 622-630.
  [Li Jia, Ma Zhongyuan, Zheng Yuanyuan, et al. Evolution of multi-scale echo system during a strong squall line process[J]. Journal of the Meteorological Sciences, 2022, 42(5): 622-630.]
[20] 范皓, 杨永胜, 段英, 等. 太行山东麓一次强对流冰雹云结构的观测分析[J]. 气象学报, 2019, 77(5): 823-834.
  [Fan Hao, Yang Yongsheng, Duan Ying, et al. An observational analysis of the cloud structure of a severe convective hailstorm over the eastern foothill of Taihang Mountain[J]. Acta Meteorological Sinica, 2019, 77(5): 823-834.]
[21] 龚佃利, 王洪, 许焕斌, 等. 2019年8月16日山东诸城一次罕见强雹暴结构和大雹形成的观测分析[J]. 气象学报, 2021, 79(4): 674-688.
  [Gong Dianli, Wang Hong, Xu Huanbin, et al. Observational analysis of a rare and severe hailstorm cloud structure and large hailstones formation on 16 August 2019 in Zhucheng, Shandong Province[J]. Acta Meteorological Sinica, 2021, 79(4): 674-688.]
[22] 蔡淼, 周毓荃, 蒋元华, 等. 一次超级单体雹暴观测分析和成雹区识别研究[J]. 大气科学, 2014, 38(5): 845-860.
  [Cai Miao, Zhou Yuquan, Jiang Yuanhua, et al. Observations, analysis, and hail-forming area identification of a supercell hailstorm[J]. Chinese Journal of Atmospheric Sciences, 2014, 38(5): 845-860.]
[23] 李红斌, 孙鸿雁, 程相坤, 等. 大连地区冰雹气候特怔及防雹天气预誓慨念模型[J]. 高原气象, 2010, 29(6): 1565-1570.
  [Li Hongbin, Sun Hongyan, Cheng Xiangkun, et al. Climate characteristic of hail and conceptual model of hail suppression in Dalian region[J]. Plateau Meteorology, 2010, 29(6): 1565-1570.]
[24] 张之贤, 张强, 陶际春. 边界层对青藏高原东北边坡地区一次冰雹天气影响的数值诊断分析[J]. 干旱区研究, 2015, 32(2): 321-328.
  [Zhang Zhixian, Zhang Qiang, Tao Jichun. Diagnostic analysis of the effect of planet boundary layer on a hail event in the northeastern edge of Qinghai-Tibetan Plateau[J]. Arid Zone Research, 2015, 32(2): 321-328.]
[25] 洪延超, 肖辉, 李宏宇, 等. 冰雹云中微物理过程研究[J]. 大气科学, 2002, 26(3): 421-432.
  [Hong Yanchao, Xiao Hui, Li Hongyu, et al. Studies on microphysical processes in hail cloud[J]. Chinese Journal of Atmospheric Sciences, 2002, 26(3): 421-432.]
[26] 朱好奇, 平凡, 谭桂容, 等. 一次北京冰雹形成的数值模拟及微物理机制研究[J]. 大气科学. doi: 10.3878/j.issn.1006-9895.2303.22213.
  [Zhu Haoqi, Ping Fan, Tan Guirong, et al. Numerical simulation and study on the microphysical mechanism of hail formation in Beijing[J]. Chinese Journal of Atmospheric Sciences. doi: 10.3878/j.issn.1006-9895.2303.22213.]
[27] 刘春文, 郭学良, 段玮, 等. 云南一次典型降雹过程的冰雹微物理形成机理数值模拟研究[J]. 大气科学, 2021, 45(5): 965-980.
  [Liu Chunwen, Guo Xueliang, Duan Wei, et al. Numerical simulation on the microphysical formation mechanism of a typical hailstorm process in Yunnan, southwestern China[J]. Chinese Journal of Atmospheric Sciences, 2021, 45(5): 965-980.]
[28] 张小娟, 陶玥, 刘国强, 等. 一次冰雹天气过程的云系发展演变及云物理特征研究[J]. 气象, 2019, 45(3): 415-425.
  [Zhang Xiaojuan, Tao Yue, Liu Guoqiang, et al. Study on the evolution of hailstorm and its cloud physical characteristics[J]. Meteorological Monthly, 2019, 45(3): 415-425.]
[29] 康凤琴, 张强, 马胜萍, 等. 青藏高原东北边缘冰雹形成机理[J]. 高原气象, 2004, 23(6): 749-757.
  [Kang Fengqin, Zhang Qiang, Ma Shengping, et al. Mechanism of hail formation on the Northeast border of Qinghai-Xizang Plateau and its Neighbourhood[J]. Plateau Meteorology, 2004, 23(6): 749-757.]
[30] Kang Fengqin, Zhang Qiang, Lu Shihua. Validation and development of a new hailstone formation theory-numerical simulations of a strong hailstorm occurring over the Qinghai-Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2007, 112: 1-13.
[31] 黄治勇, 徐桂荣, 王晓芳, 等. 基于地基微波辐射计资料对咸宁两次冰雹天气的观测分析[J]. 气象, 2014, 40(2): 216-222.
  [Huang Zhiyong, Xu Guirong, Wang Xiaofang, et al. Analysis on two hailstorm events in Xianning based on observations of ground based microwave radiometer[J]. Meteorological Monthly, 2014, 40(2): 216-222.]
[32] 黄治勇, 周志敏, 徐桂荣, 等. 风廓线雷达和地基微波辐射计在冰雹天气监测中的应用[J]. 高原气象, 2015, 34(1): 269-278.
  [Huang Zhiyong, Zhou Zhimin, Xu Guirong, et al. Monitoring application of hailstorm event with the observation of wind profile radar and ground-based microwave radiometer[J]. Plateau Meteorology, 2015, 34(1): 269-278.]
[33] 陶涛, 张立新, 桑建人, 等. 六盘山区一次非典型冰雹天气过程微物理量特征的分析[J]. 干旱区地理, 2020, 43(2): 299-307.
  [Tao Tao, Zhang Lixin, Sang Jianren, et al. A case analysis of microphysical characteristics of atypical hail formation over Liupan Mountain, China[J]. Arid Land Geography, 2020, 43(2): 299-307.]
[34] 柯莉萍, 谷晓平, 张艳, 等. 贵州乌蒙山区雨滴谱特征及降水估测研究[J]. 云南大学学报: 自然科学版, 2021, 43(6): 1166-1175.
  [Ke Liping, Gu Xiaoping, Zhang Yan, et al. Characteristics of raindrop spectrum and precipitation estimation in Wumeng Mountain area, Guizhou Province[J]. Journal of Yunnan University: Natural Sciences Edition, 2021, 43(6): 1166-1175.]
[35] 濮江平, 赵国强, 蔡定军, 等. Parsivel(R)激光降水粒子谱仪及其在气象领域的应用[J]. 气象与环境科学, 2007, 30(2): 3-8.
  [Pu Jiangping, Zhao Guoqiang, Cai Dingjun, et al. Parsivel recipitation particle spectrometer and application meteorological realm[J]. Meteorological and Environmental Sciences, 2007, 30(2): 3-8.]
[36] 岳治国, 梁谷. 陕西渭北一次降雹过程的粒子谱特征分析[J]. 高原气象, 2018, 37(6): 1716-1724.
  [Yue Zhiguo, Liang Gu. Characteristics of precipitation particles in a hailstorm process in Weibei area of Shaanxi Province[J]. Plateau Meteorology, 2018, 37(6): 1716-1724.]
[37] 徐家骝. 冰雹微物理与成雹机制[M]. 北京: 农业出版社, 1979: 110.
  [Xu Jialiu. The Microphysics of Hail and the Mecha-Nism of Hail Formation[M]. Beijing: China Agriculture Press, 1979: 110.]
[38] 李聪, 姜有山, 姜迪, 等. 一次冰雹天气过程的多源资料观测分析[J]. 气象, 2017, 43(9): 1084-1094.
  [Li Cong, Jiang Youshan, Jiang Di, et al. Observation and analysis of a hailstorm event based on multi-source data[J]. Meteorological Monthly, 2017, 43(9): 1084-1094.]
文章导航

/