不同施氮水平对油莎豆农田土壤养分表观平衡和块茎产量的影响
收稿日期: 2023-08-11
修回日期: 2023-10-10
网络出版日期: 2024-01-24
基金资助
国家重点研发计划(2019YFC0507602)
Effects of different nitrogen levels on the apparent soil nutrient balance and tuber yield of Cyperus esculentus farmland
Received date: 2023-08-11
Revised date: 2023-10-10
Online published: 2024-01-24
研究不同施氮水平下沙质土壤油莎豆(Cyperus esculentus)土壤养分表观平衡及块茎产量,为沙质土壤油莎豆科学施氮提供理论依据。以油莎豆品种“中油莎1号”为研究对象,分别设置0 kg·hm-2(N0)、75 kg·hm-2(N1)、150 kg·hm-2(N2)、225 kg·hm-2(N3)4个施氮水平。分析4个施氮水平对油莎豆农艺性状、土壤表观养分平衡及块茎产量的影响。结果表明:随着施氮量增加,两地油莎豆茎蘖数、株高、单片叶面积等均有增加,但过高的施氮量会造成油莎豆地上部徒长,导致产量下降;施氮量为150 kg·hm-2(N2),油莎豆最大根长、根体积等农艺性状最优,油莎豆整株干重及块茎产量均最高,块茎鲜产可达到9298.87~10336.06 kg·hm-2;两地氮素表观盈余率在0 kg·hm-2(N0)和75 kg·hm-2(N1)水平下均为负值,150 kg·hm-2(N2)和225 kg·hm-2(N3)水平下均为正值,表明两地氮素均在N2水平即施氮量为150 kg·hm-2时达到氮素平衡状态。冗余分析也表明油莎豆茎蘖数、最大根长、根体积、氮携出量是驱动油莎豆干物质及块茎产量形成的主要因素。因此在北方沙质土壤条件下,N素施入量为150 kg·hm-2时,可促进油莎豆对养分的吸收、维持土壤表观养分平衡,有利于油莎豆良好的生长发育和产量的提高。
曹秭琦 , 路战远 , 任永峰 , 赵小庆 , 王建国 , 侯智慧 , 韩云飞 , 王登云 , 尚学燕 , 段锐 . 不同施氮水平对油莎豆农田土壤养分表观平衡和块茎产量的影响[J]. 干旱区研究, 2024 , 41(1) : 71 -79 . DOI: 10.13866/j.azr.2024.01.07
This study aimed to investigate the apparent soil nitrogen balance and tuber yield of Cyperus esculentus in sandy farmland under different levels of nitrogen application and provide a theoretical basis for increasing the yield of Cyperus esculentus in sandy farmland. Four nitrogen fertilizer treatments, 0 kg·hm-2 (N0), 75 kg·hm-2 (N1), 150 kg·hm-2 (N2), and 225 kg·hm-2 (N3), were applied to Cyperus esculentus in 2021 at the experimental site in Dengkou County, Bayannur City, Inner Mongolia, and Toketo County, Inner Mongolia Academy of Agricultural Sciences, Hohhot, China. The effects of the four different N application levels on agronomic traits, tuber yield, and clear soil nutrient balance of Cyperus esculentus were analyzed. The number of tillers, plant height, and single leaf area of C. esculentus increased alongside increasing N application, but excessive N application caused above-ground growth of C. esculentus, resulting in lower yield. At the application rate of 150 kg·hm-2 (N2), Cyperus esculentus exhibited superior agronomic traits, including maximum root length and root volume, the highest whole plant dry weight and tuber yield, and a fresh tuber yield of 9298.87 kg·hm-2. The apparent nitrogen surplus rates in the two locations were negative at the levels of 0 kg·hm-2 (N0) and 75 kg·hm-2 (N1) and positive at the levels of 150 kg·hm-2 (N2) and 225 kg·hm-2 (N3). This pattern indicates that nitrogen reached a balanced state at the N2 level in both locations, signifying an optimal nitrogen application rate of 150 kg·hm-2. RDA analysis showed that tiller number, plant height, single leaf area, maximum root length, root volume, and nitrogen uptake were the main factors driving the formation of dry matter and tuber yield in C. esculentus. Therefore, in northern sandy soil conditions, the application of N at 150 kg·hm-2 can promote the absorption of nutrients by Cyperus esculentus and maintain the apparent nutrient balance of soil, which is conducive to the growth, development, and yield formation of Cyperus esculentus.
[1] | 廖贵云, 吴秀芹, 谭锦, 等. WEPS模型在乌兰布和沙漠油莎豆(Cyperus esculentus)种植区的应用[J]. 干旱区研究, 2022, 39(5): 1504-1513. |
[1] | [Liao Guiyun, Wu Xiuqin, Tan Jin, et al. Application of Wind Erosion Prediction System in the Ulan Buh Desert Cyperus esculentus planting area[J]. Arid Zone Research, 2022, 39(5): 1504-1513.] |
[2] | Duman E. Some physico-chemical properties, fatty acid compositions, macro-micro minerals and sterol contents of two variety tigernut tubers and oils harvested from East Mediterranean region[J]. Food Science and Technology, 2019, 39(2): 610-615. |
[3] | Follak S, Belz R, Bohren C, et al. Biological flora of Central Europe: Cyperus esculentus L.[J]. Perspectives in Plant Ecology, Evolution and Systematics, 2016, 23: 33-51. |
[4] | Akabassi G C, Palanga K K, Padonou E A, et al. Biology, production constraints and uses of Cyperus exculentus L. (neglected and underutilized crop species), implication for valorization: A review[J]. Genetic Resources and Crop Evolution, 2022, 69: 1979-1992. |
[5] | 曹秭琦, 任永峰, 路战远, 等. 油莎豆的特性及其开发利用研究进展[J]. 北方农业学报, 2022, 50(1): 66-74. |
[5] | [Cao Ziqi, Ren Yongfeng, Lu Zhanyuan, et al. Research progress on the characteristics and development and utilization of Cyperus esculentus[J]. Journal of North Agriculture, 2022, 50(1): 66-74.] |
[6] | 赵小庆, 刘和, 路战远, 等. 沙化退化土地油莎豆防风固沙栽培技术[J]. 现代农业, 2019, 45(6): 12-13. |
[6] | [Zhao Xiaoqing, Liu He, Lu Zhanyuan, et al. Cultivation techniques of Cyperus esculentus L. in sandy degraded land[J]. Modern Agriculture, 2019, 45(6): 12-13.] |
[7] | Tumbleson M E, Kommedahl T. Reproductive potential of yellow nutgrass[J]. Weed, 1961(9): 646-653. |
[8] | 王晓婧. 不同小麦品种氮素吸收利用特性和品质差异分析[D]. 泰安: 山东农业大学, 2017. |
[8] | [Wang Xiaojing. Study on the Difference of Nitrogen Use Efficiency and Quality in the Different Wheat Varieties[D]. Tai’an: Shandong Agricultural University, 2017.] |
[9] | Maheswari M, Murthy A N, Shanker A K. Nitrogen Nutrition in Crops and Its Importance in Crop Quality[M]. The Indian Nitrogen Assessment, Amsterdam: Elsevier, 2017. |
[10] | Alpina A, Rafiqul I M, Islam M, et al. Methods of urea fertilizer application influence growth, yield, and nitrogen use efficiency of transplanted Aman rice[J]. Water, 2022, 14(21): 3539-3539. |
[11] | 沈庆雷. 油莎豆高产优质栽培初步研究[D]. 扬州: 扬州大学, 2010. |
[11] | [Shen Qinglei. A Preliminary Studies on High Yield and Quality Cultivation in Chufa[D]. Yangzhou: Yangzhou University, 2010.] |
[12] | 曹哲, 何文寿, 侯贤清, 等. 不同施氮量对马铃薯养分吸收及产量的影响[J]. 西南农业学报, 2017, 30(7): 1600-1605. |
[12] | [Cao Zhe, He Wenshou, Hou Xianqing, et al. Effects of different nitrogen application rates on nutrient uptake and yield of potato[J]. Southwest China Journal of Agricultural Sciences, 2017, 30(7): 1600-1605.] |
[13] | 石晓华, 杨海鹰, 康文钦, 等. 不同施氮量对马铃薯-小麦轮作体系产量及土壤氮素平衡的影响[J]. 作物杂志, 2018, 34(2): 108-113. |
[13] | [Shi Xiaohua, Yang Haiying, Kang Wenqing, et al. Effects of nitrogen fertilization on crop yields and soil nitrogen balance in potato-wheat system[J]. Crops, 2018, 34(2): 108-113.] |
[14] | 马鹏, 李红, 黄长虹, 等. 土壤养分平衡与农业施肥的关系探究[J]. 农家参谋, 2022, 40(14): 19-21. |
[14] | [Ma Peng, Li Hong, Huang Changhong, et al. Exploring the relationship between soil nutrient balance and agricultural fertilization[J]. The Farmers Consultant, 2022, 40(14): 19-21.] |
[15] | 李变变, 张凤华, 赵亚光, 等. 不同刈割程度对油莎豆非结构性碳水化合物代谢及生物量的影响[J]. 植物生态学报, 2023, 47(1): 101-113. |
[15] | [Li Bianbian, Zhang Fenghua, Zhao Yaguang, et al. Effects of different clipping degrees on non-structural carbohydrate metabolism and biomass of Cyperus esculentus[J]. Chinese Journal of Plant Ecology, 2023, 47(1): 101-113.] |
[16] | 杨钰洁, 梁国玲, 刘文辉, 等. 硅肥对青藏高原高寒地区燕麦抗倒伏性状及种子产量的影响[J]. 草业科学, 2022, 39(3): 551-561. |
[16] | [Yang Yujie, Liang Guoling, Liu Wenhui, et al. Effects of silicon fertilizer on lodging resistance traits and seed yield of Avena sativa in the alpine region of Qinghai-Tibet Plateau[J]. Pratacultural Science, 2022, 39(3): 551-561.] |
[17] | 傅伟, 刘坤平, 陈洪松, 等. 等氮配施有机肥对喀斯特峰丛洼地农田作物产量与养分平衡的影响[J]. 中国生态农业学报, 2017, 25(6): 812-820. |
[17] | [Fu Wei, Liu Kunping, Chen Hongsong, et al. Effect of partial replacement of inorganic N with organic manure on crop yield and soil nutrient balance in arable ecosystem in karst peak-cluster depression[J]. Chinese Journal of Eco-Agriculture, 2017, 25(6): 812-820.] |
[18] | Janmohammadi M, Abdoli H, Sabaghnia N, et al. The effect of iron, zinc and organic fertilizer on yield of chickpea(Cicer artietinum L. ) in Mediterranean climate[J]. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 2018, 66(1): 49-60. |
[19] | 卢发光. 种植密度和施氮量对沿海盐碱地紫花苜蓿生长、生理、产量和品质的影响[D]. 扬州: 扬州大学, 2022. |
[19] | [Lu Faguang. Effects of Planting Density and Nitrogen Application Rate on Growth, Physiology, Yield and Quality of Alfalfa in Coastal Saline-Alkali Land[D]. Yangzhou: Yangzhou University, 2022.] |
[20] | Leghari S J, Wahocho N A, Laghari G M, et al. Role of nitrogen for plant growth and development: A review[J]. Advances in Environmental Biology, 2016, 10(9): 209-218. |
[21] | Jerusha B M, Singh S. Effect of nitrogen levels and seaweed extract (Kappaphycus alvarezii) on growth and yield of summer maize (Zea mays L.)[J]. International Journal of Plant & Soil Science, 2022, 34(22): 1313-1321. |
[22] | 吴子帅, 李虎, 黄秋要, 等. 施氮量和栽插密度对桂育11号产量和稻米品质的影响[J]. 中国农业科技导报, 2021, 23(8): 154-162. |
[22] | [Wu Zishuai, Li Hu, Huang Qiuyao, et al. Influences of nitrogen fertilizer application rate and planting density on the yield and rice quality of Guiyu 11[J]. Journal of Agricultural Science and Technology, 2021, 23(8): 154-162.] |
[23] | Gao K, Chen F J, Yuan L X, et al. A comprehensive analysis of root morphological changes and nitrogen allocation in maize in response to low nitrogen stress[J]. Plant, Cell and Environment, 2015, 38(4): 740-750. |
[24] | 胡仁, 肖大康, 丁紫娟, 等. 根区施氮对水稻苗期根系生长及分布的影响[J]. 江苏农业科学, 2022, 50(22): 93-99. |
[24] | [Hu Ren, Xiao Dakang, Ding Zijuan, et al. Impacts of nitrogen application in root zone on root growth and distribution of rice at seeding stage[J]. Jiangsu Agricultural Sciences, 2022, 50(22): 93-99.] |
[25] | Silva P H M, Poggiani F, Libardi P L, et al. Fertilizer management of eucalypt plantations on sandy soil in Brazil: Initial growth and nutrient cycling[J]. Forest Ecology and Management, 2013, 301(1): 67-78. |
[26] | Moe K, Moh S M, Htwe A Z, et al. Effects of integrated organic and inorganic fertilizers on yield and growth parameters of rice varieties[J]. Rice Science, 2019, 26(5): 309-318. |
[27] | 孙一梅, 田青, 吕朋, 等. 极端干旱与氮添加对半干旱沙质草地物种多样性、叶性状和生产力的影响[J]. 干旱区研究, 2020, 37(6): 1569-1579. |
[27] | [Sun Yimei, Tian Qing, Lv Peng, et al. Effects of extreme drought and nitrogen addition on species diversity, leaf traits and productivity in a semi-arid sandy grassland[J]. Arid Zone Research, 2020, 37(6): 1569-1579.] |
[28] | 孙佳尧, 李志刚, 孟祥军, 等. 氮肥处理下油莎豆叶片生理特性和籽粒品质与产量相关研究[J]. 内蒙古民族大学学报(自然科学版), 2020, 35(4): 327-332. |
[28] | [Sun Jiayao, Li Zhigang, Meng Xiangjun, et al. Correlation between leaf physiological characteristics, grain quality and yield of Cyperus esculentus under nitrogen treatment[J]. Journal of Inner Mongolia Minzu University(Natural Sciences), 2020, 35(4): 327-332.] |
[29] | 杨晓龙, 方建军, 汪本福, 等. 不同施氮量对桃优香占产量及农艺性状的影响[J]. 湖北农业科学, 2021, 60(15): 34-37. |
[29] | [Yang Xiaolong, Fang Jianjun, Wang Benfu, et al. Effects of different nitrogen amounts on yield and agronomic characters of Taoyouxiangzhan[J]. Hubei Agricultural Sciences, 2021, 60 (15): 34-37.] |
[30] | 朱紫娟. 稻麦轮作体系秸秆还田与氮肥梯度效应研究[D]. 扬州: 扬州大学, 2022. |
[30] | [Zhu Zijuan. Study on the Effect of Straw Returning and Nitrogen Fertilizer Gradient in Rice-Wheat Rotation System[D]. Yangzhou: Yangzhou University, 2022.] |
[31] | 李全英, 李海波. 内蒙古托克托县盐碱地适宜种植水稻品种筛选[J]. 中国稻米, 2020, 26(6): 109-111, 113. |
[31] | [Li Quanying, Li Haibo. Screening of rice varieties suitable for saline-alkali land planting in Toketo County, Inner Mongolia[J]. China Rice, 2020, 26(6): 109-111, 113.] |
[32] | 王园园. 丛枝菌根真菌和钾调控宁夏枸杞耐盐及钾吸收机制[D]. 杨凌: 西北农林科技大学, 2020. |
[32] | [Wang Yuanyuan. Arbuscular Mycorrhizal Fungi and Potassium Regulate the Salt Tolerance and Potassium Absorption Mechanism of Lycium barbarum[D]. Yangling: Northwest A & F University, 2020.] |
[33] | 姜茜, 孙炜琳, 朱立志. 浙江省农田养分平衡的时空变化及环境风险分析[J]. 长江流域资源与环境, 2018, 27(2): 335-344. |
[33] | [Jiang Qian. Sun Weilin, Zhu Lizhi. Analysis of temporal and spatial variations of nutrient balance and its environmental risk in Zhejiang Province[J]. Resources and Environment in the Yangtze Basin, 2018, 27(2): 335-344.] |
[34] | 张磊, 王立春, 孔丽丽, 等. 不同施肥模式下春玉米养分吸收利用和土壤养分平衡研究[J]. 土壤通报, 2017, 48(5): 1169-1176. |
[34] | [Zhang Lei, Wang Lichun, Kong Lili, et al. Nutrient utilization and soil nutrient balance of spring maize under different fertilizer application modes[J]. Chinese Journal of Soil Science, 2017, 48(5): 1169-1176.] |
[35] | 王建国, 王德禄, 王守宇, 等. 黑龙江农田养分平衡和养分水平的动态变化[J]. 农业系统科学与综合研究, 2000, 16(2): 124-127. |
[35] | [Wang Jianguo, Wang Delu, Wang Shouyu, et al. Dynamic variation of the farmland nutrient’s balance and its content in Heilongjiang Provience[J]. System Sciences and Comprehensive Studies in Agriculture, 2000, 16(2): 124-127.] |
[36] | 鲁如坤, 时正元, 施建平. 我国南方6省农田养分平衡现状评价和动态变化研究[J]. 中国农业科学, 2000, 33(2): 63-67. |
[36] | [Lu Rukun, Shi Zhengyuan, Shi Jianping. Nutrient balance of agroecosystem in six provinces in southern China[J]. Scientia Agricultura Sinica, 2000, 33(2): 63-67.] |
[37] | Wang R, Min J, Kronzucker H J, et al. N and P runoff losses in China’s vegetable production systems: Loss characteristics, impact, and management practices[J]. Science of the Total Environment, 2019, 663: 971-979. |
[38] | 杨红宾, 王胜, 殷溶, 等. 紫色土坡耕地农桑系统对土壤磷素流失的影响[J]. 农业环境科学学报, 2022, 41(6): 1316-1326. |
[38] | [Yang Hongbin, Wang Sheng, Yin Rong, et al. Effects of crop-mulberry system on phosphorus loss in sloping cropland with purple soil[J]. Journal of Agro-Environment Science, 2022, 41(6): 1316-1326.] |
/
〈 | 〉 |