青海省多年地表感热通量的时空变化特征
收稿日期: 2023-03-30
修回日期: 2023-05-16
网络出版日期: 2024-01-24
基金资助
国家自然科学基金项目(31960361);内蒙古自然科学基金项目(2022MS04010)
Temporal and spatial variations in multi-year surface sensible heat flux in Qinghai Province
Received date: 2023-03-30
Revised date: 2023-05-16
Online published: 2024-01-24
选取青海省35个气象站观测数据,基于CHEN-WENG感热系数方案,计算了1980—2017年青海省地表感热通量。利用小波分析、Mann-Kendall突变检验和经验正交函数法(Empirical Orthogonal Function,EOF),对感热通量的时空变化特征及其影响因子进行分析。结果表明:(1)1980年以来,青海省全年和各季节感热通量总体上均呈上升趋势,并具有28 a的主周期和约18 a的副周期,冬季的周期变化较为复杂;(2)全年和各季节感热通量与地气温差存在显著相关性,2004—2017年受地气温差增大的影响上升;(3)全年、春季和秋季感热通量与风速存在显著相关性,1980—2004年受风速减小的影响感热通量下降;(4)夏季降水与感热通量呈显著负相关;(5)从空间上看,全年以及春季感热通量呈现出显著的东西分异,秋、冬季表现出一定程度的南北分异。
孙宽 , 孙雪岩 , 唐艳 , 张亚玲 , 刘富刚 , 范克胜 , 杨子琼 , 屈志强 . 青海省多年地表感热通量的时空变化特征[J]. 干旱区研究, 2024 , 41(1) : 36 -49 . DOI: 10.13866/j.azr.2024.01.04
Based on the Chen-Weng heat exchange parameterized scheme, the average sensible heat flux from 1980 to 2017 in Qinghai Province was calculated using the observation data collected from 35 stations. Temporal and spatial characteristics of the sensible heat fluxes and their impact factors in Qinghai Province were determined using wavelet analysis, Mann-Kendall test, and Empirical Orthogonal Function. The result shows that the seasonal and annual average sensible heat fluxes have risen since 1980. The primary cycle of the annual average sensible heat flux was 28 a, and the secondary cycle was about 18 a. A high correlation between the seasonal and yearly average sensible heat flux with average ground-air temperature difference manifested. The annual average sensible heat flux increased from 2004 to 2017 due to a rise in the average ground-air temperature differences. The correlation of average wind speed with annual, spring, and autumn average sensible heat fluxes was high. The average yearly sensible heat flux decreased from 1980 to 2004 due to a decline in average wind speed. A prominent negative correlation between summer precipitation and sensible heat flux was identified. From the perspective of space, spring and annual average sensible heat fluxes expressed a prominent east-west difference and partly indicated a north-south variation in the autumn and winter.
[1] | 吴国雄, 刘屹岷, 何编, 等. 青藏高原感热气泵影响亚洲夏季风的机制[J]. 大气科学, 2018, 42(3): 488-504. |
[1] | [Wu Guoxiong, Liu Yimin, He Bian, et al. Review of the impact of the Tibetan Plateau sensible heat driven air-pump on the Asian summer monsoon[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(3): 488-504.] |
[2] | 徐祥德, 赵天良, 施晓晖, 等. 青藏高原热力强迫对中国东部降水和水汽输送的调制作用[J]. 气象学报, 2015, 73(1): 20-35. |
[2] | [Xu Xiangde, Zhao Tianliang, Shi Xiaohui, et al. A study of the role Tibetan Plateau’s thermal forcing in modulating rainband and moisture transport in eastern China[J]. Acta Meteorologica Sinica, 2015, 73(1): 20-35.] |
[3] | 胡媛媛, 仲雷, 马耀明, 等. 青藏高原典型下垫面地表能量通量的模型估算与验证[J]. 高原气象, 2018, 37(6): 1499-1510. |
[3] | [Hu Yuanyuan, Zhong Lei, Ma Yaoming, et al. Model estimation and validation of the surface energy fluxes at typical underlying surfaces over the Qinghai-Tibetan Plateau[J]. Plateau Meteorology, 2018, 37(6): 1499-1510.] |
[4] | Yang K, Guo X F, He J, et al. On the climatology and trend of the atmospheric heat source over the Tibetan Plateau: An experiments-supported revisit[J]. Journal of Climate, 2011, 24(5): 1525-1541. |
[5] | Zhang H X, Li W P, Li W J. Influence of late springtime surface sensible heat flux anomalies over the Tibetan and Iranian Plateaus on the location of the South Asian high in early summer[J]. Advances in Atmospheric Sciences, 2019, 36(1): 93-103. |
[6] | 祁艳, 颜玉倩, 李金海, 等. 青藏高原5—10月地表潜热通量与青海同期降水之间的关系[J]. 干旱区研究, 2019, 36(3): 529-536. |
[6] | [Qi Yan, Yan Yuqian, Li Jinhai, et al. Relationship between surface latent heat flux over the Qinghai-Tibetan Plateau and precipitation in Qinghai from May to October[J]. Arid Zone Research, 2019, 36(3): 529-536.] |
[7] | 王欢, 李栋梁. 21世纪初青藏高原感热年代际增强对中国东部季风雨带关键区夏季降水年代际转折的影响[J]. 地球物理学报, 2020, 63(2): 412-426. |
[7] | [Wang Huan, Li Dongliang. Impacts of decadal variability in sensible heat over the Tibetan Plateau on decadal transition of summer precipitation over dominant regions of monsoon rainfall band in eastern China since the early 2000s[J]. Chinese Journal of Geophysics, 2020, 63(2): 412-426.] |
[8] | 葛静, 王黎娟, 张良瑜. 春末夏初南亚高压活动与青藏高原及周边热力强迫的关系[J]. 大气科学学报, 2015, 38(5): 611-619. |
[8] | [Ge Jing, Wang Lijuan, Zhang Liangyu. Relationship between South Asian high activity and thermal forcing over Tibetan Plateau and surrounding regions during late spring and early summer[J]. Transactions of Atmospheric Sciences, 2015, 38(5): 611-619.] |
[9] | Monin A S, Obukhov A M. Basic laws of turbulent mixing in the atmosphere[J]. Trudy Akademiia, 1954, 24(151): 163-187. |
[10] | 叶笃正, 高由禧. 青藏高原气象学[M]. 北京: 科学出版社, 1979: 329-337. |
[10] | [Ye Duzheng, Gao Youxi. The Meteorology of the Qinghai-Xizang Plateau[M]. Beijing: Science Press, 1979: 329-337.] |
[11] | 陈万隆, 翁笃鸣. 关于青藏高原感热和潜热旬总量计算方法的初步研究[C]// 青藏高原气象科学实验论文集(二). 北京: 科学出版社, 1984, 35-45. |
[11] | [Chen Wanlong, Wong Duming. A preliminary study on the computational method of 10-day mean sensible heat and latent heat on the Tibetan Plateau[C]// Collected works of the Qinghai-Xizang Plateau Meteorological Experiment (Series 2). Beijing: Science Press, 1984, 35-45.] |
[12] | Yang K, Qin J, Guo X F, et al. Method development for estimating sensible heat flux over the Tibetan Plateau from CMA Data[J]. Journal of Applied Meteorology & Climatology, 2009, 48(12): 2474-2486. |
[13] | Cressman G P. Improved terrain effects in barotropic forecasts[J]. Monthly Weather Review, 1960, 88(9): 327-342. |
[14] | 阳坤, 郭晓峰, 武炳义. 青藏高原地表感热通量的近期变化趋势[J]. 中国科学: 地球科学, 2010, 40(7): 923-932. |
[14] | [Yang Kun, Guo Xiaofeng, Wu Bingyi. Recent trends in surface sensible heat flux on the Tibetan Plateau[J]. Science China: Earth Science, 2010, 40(7): 923-932.] |
[15] | 竺夏英, 刘屹岷, 吴国雄. 夏季青藏高原多种地表感热通量资料的评估[J]. 中国科学: 地球科学, 2012, 42(7): 1104-1112. |
[15] | [Zhu Xiaying, Liu Yimin, Wu Guoxiong. An assessment of summer sensible heat flux on the Tibetan Plateau from eight data sets[J]. Science China: Earth Science, 2012, 42(7): 1104-1112.] |
[16] | Guo X, Yang K, Chen Y. Weakening sensible heat source over the Tibetan Plateau revisited: Effects of the land-atmosphere thermal coupling[J]. Theoretical and Applied Climatology, 2011, 104(1-2): 1-12. |
[17] | Zhu L H, Huang G, Fan G Z, et al. Evolution of surface sensible heat over the Tibetan Plateau under the recent global warming hiatus[J]. Advances in Atmospheric Sciences, 2017, 34(10): 1249-1262. |
[18] | 张扬, 楚新正, 杨少敏, 等. 近56 a新疆北部地区气候变化特征[J]. 干旱区研究, 2019, 36(1): 212-219. |
[18] | [Zhang Yang, Chu Xinzheng, Yang Shaomin, et al. Climate change in North Xinjiang in recent 56 years[J]. Arid Zone Research, 2019, 36(1): 212-219.] |
[19] | 桑燕芳, 王中根, 刘昌明. 小波分析方法在水文学研究中的应用现状及展望[J]. 地理科学进展, 2013, 32(9): 1413-1422. |
[19] | [Sang Yanfang, Wang Zhonggen, Liu Changming. Applications of wavelet analysis to hydrology: Status and prospects[J]. Progress in Geography, 2013, 32(9): 1413-1422.] |
[20] | 魏凤英. 现代气候统计诊断与预测技术[M]. 北京: 气象出版社, 2007. |
[20] | [Wei Fengying. Modern Climate Statistical Diagnosis and Prediction Techniques[M]. Beijing: China Meteorological Press, 2007.] |
[21] | 赵峰, 毕硕本, 李兴宇, 等. 基于EOF和REOF的1470—1911年黄河中下游地区旱涝空间分布特征分析[J]. 干旱区地理, 2019, 42(4): 799-809. |
[21] | [Zhao Feng, Bi Shuoben, Li Xingyu, et al. Spatial characteristics of drought/flood disasters based on EOF and REOF in the middle and lower reaches of the Yellow River from 1470 to 1911[J]. Arid Land Geography, 2019, 42(4): 799-809.] |
[22] | 雷润芝, 余晔, 周国兵, 等. 1984—2020年青藏高原感热通量长期变化趋势分析[J]. 高原气象, 2023, 42(4): 833-847. |
[22] | [Lei Runzhi, Yu Ye, Zhou Guobing, et al. Long-term variation of sensible heat flux over the Qinghai-Xizang Plateau from 1984 to 2020[J]. Plateau Meteorology, 2023, 42(4): 833-847.] |
[23] | Wang Huan, Li Dongliang. Decadal variability in summer precipitation over eastern China and its response to sensible heat over the Tibetan Plateau since the early 2000s[J]. International Journal of Climatology, 2019, 39(3): 1604-1617. |
[24] | Wang M R, Wang J, Chen D L, et al. Recent recovery of the boreal spring sensible heating over the Tibetan Plateau will continue in CMIP6 future projections[J]. Environment Research Letter, 2019, 14(12): 124066. |
[25] | 解晋, 余晔, 刘川, 等. 青藏高原地表感热通量变化特征及其对气候变化的响应[J]. 高原气象, 2018, 37(1): 28-42. |
[25] | [Xie Jin, Yu Ye, Liu Chuan, et al. Characteristics of surface sensible heat flux over the Qinghai-Tibetan Plateau and its response to climate change[J]. Plateau Meteorology, 2018, 37(1): 28-42.] |
[26] | 于威, 刘屹岷, 杨修群, 等. 青藏高原不同海拔地表感热的年际和年代际变化特征及其成因分析[J]. 高原气象, 2018, 37(5): 1161-1176. |
[26] | [Yu Wei, Liu Yimin, Yang Xiuqun, et al. The interannual and decadal variation characteristics of the surface sensible heating at different elevations over the Qinghai-Tibetan Plateau and attribution analysis[J]. Plateau Meteorology, 2018, 37(5): 1161-1176.] |
[27] | Duan A M, Wu G X. Weakening trend in the atmospheric heat source over the Tibetan Plateau during recent decades. Part I: observations[J]. Journal of Climate, 2008, 21(13): 3149-3164. |
[28] | Zhou L T, Huang R H. Regional differences in surface sensible and latent heat fluxes in China[J]. Theoretical and Applied Climatology, 2014, 116(3/4): 625-637. |
[29] | Yang K, Wu H, Qin J, et al. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review[J]. Global and Planetary Change, 2014, 112(1): 79-91. |
[30] | 戴逸飞, 王慧, 李栋梁. 卫星遥感结合气象资料计算的青藏高原地面感热特征分析[J]. 大气科学, 2016, 40(5): 1009-1021. |
[30] | [Dai Yifei, Wang Hui, Li Dongliang. Characteristics of surface sensible heat flux calculated from satellite remote sensing and field observations in the Tibetan Plateau[J]. Chinese Journal of Atmospheric Sciences, 2016, 40(5): 1009-1021.] |
[31] | Chen X, Su Z, Ma Y, et al. Development of a 10-year (2001-2010) 0.1° data set of land-surface energy balance for mainland China[J]. Atmospheric Chemistry and Physics, 2014, 14(23): 13097-13117. |
[32] | Anselin L, Syabri I, Kho Y. GeoDa: An introduction to spatial data analysis[J]. Geographical Analysis, 2006, 38(1): 5-22. |
[33] | Anselin L. Local indicators of spatial association: LISA[J]. Geographical Analysis, 1995, 27(2): 93-115. |
[34] | 王慧, 张璐, 石兴东, 等. 青藏高原中东部地表感热趋势转折特征的季节差异[J]. 大气科学, 2022, 46(1): 133-150. |
[34] | [Wang Hui, Zhang Lu, Shi Xingdong, et al. Seasonal differences in the trend turning characteristics of surface sensible heat over the central and eastern Tibetan Plateau[J]. Chinese Journal of Atmospheric Sciences, 2022, 46(1): 133-150.] |
[35] | Flanner M G, Shell K M, Barlage M, et al. Radiative forcing and albedo feedback from the northern Hemisphere cryosphere between 1979 and 2008[J]. Nature Geoscience, 2011, 4(3): 151-155. |
[36] | Duan A M, Li F, Wang M R, et al. Persistent weakening trend in the spring sensible heat source over the Tibetan Plateau and its impact on the Asian summer monsoon[J]. Journal of Climate, 2011, 24(21): 5671-5682. |
[37] | You Q L, Fraedrich K, Min J Z, et al. Observed surface wind speed in the Tibetan Plateau since 1980 and its physical causes[J]. International Journal of Climatology, 2014, 34(6): 1873-1882. |
[38] | 姚慧茹, 李栋梁. 1971—2012年青藏高原春季风速的年际变化及对气候变暖的响应[J]. 气象学报, 2016, 74(1): 60-75. |
[38] | [Yao Huiru, Li Dongliang. The interannual variation of wind speed in the Tibetan Plateau in spring and its response to global warming during 1971-2012[J]. Acta Meteorologica Sinica, 2016, 74(1): 60-75.] |
/
〈 | 〉 |