生态与环境

铁路高架桥对局地风动力的影响——以敦格铁路沙山沟为例

  • 薛承杰 ,
  • 张克存 ,
  • 安志山 ,
  • 张宏雪 ,
  • 潘加朋
展开
  • 1.中国科学院西北生态环境资源研究院敦煌戈壁荒漠生态与环境研究站,甘肃 敦煌 736200
    2.中国科学院西北生态环境资源研究院沙漠与沙漠化重点实验室,甘肃 兰州 730000
    3.中国科学院大学,北京 100049
薛承杰(1993-),男,博士研究生,主要从事风沙工程研究. E-mail: Xuechengjie2022@163.com

收稿日期: 2023-04-01

  修回日期: 2023-05-08

  网络出版日期: 2023-11-01

基金资助

国家自然科学基金项目(42171083);甘肃省自然科学基金(22JR5RA066)

Influences of railway viaducts on local wind power: A case study of the Shashangou Bridge used by the Dunge Railway

  • Chengjie XUE ,
  • Kecun ZHANG ,
  • Zhishan AN ,
  • Hongxue ZHANG ,
  • Jiapeng PAN
Expand
  • 1. Dunhuang Gobi Desert Ecology and Environment Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Dunhuang 736200, Gansu, China
    2. Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
    3. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2023-04-01

  Revised date: 2023-05-08

  Online published: 2023-11-01

摘要

本文通过野外观测、室内分析计算、CFD数值模拟方法,对敦格铁路沙山沟特大桥东西两侧风动力环境特征进行研究分析。结果表明:(1)沙山沟特大桥东西两侧春夏季起沙风主要以NW和WNW风向为主,秋冬季起沙风向主要以SE、S风为主;沙山沟特大桥西侧全年输沙势为284.19 VU,属于中等风能环境,合成输沙势为27.4 VU,合成输沙风向为124°,方向变率指数为0.10,属于小比率,风向多变。(2)沙山沟特大桥东侧年输沙势为31.24 VU,属于低风能环境,合成输沙势为8.97 VU,合成输沙风向为91°,方向变率指数为0.29,属于中比率;沙山沟特大桥西侧平均风速、起沙风频率、输沙势、合成输沙势较大,应加强高架桥西侧沙害监测与防治;根据高架桥西侧风动力环境特点并结合流动沙丘进行模拟,分析得出桥底架空区域及桥面风速均大于起沙风速,输沙能力较强,不易产生积沙。但随着沙丘的前移,桥底架空区域产生积沙及风沙上轨可能性增大。

本文引用格式

薛承杰 , 张克存 , 安志山 , 张宏雪 , 潘加朋 . 铁路高架桥对局地风动力的影响——以敦格铁路沙山沟为例[J]. 干旱区研究, 2023 , 40(10) : 1678 -1686 . DOI: 10.13866/j.azr.2023.10.14

Abstract

The dynamic wind environment characteristics on the east and west sides of the Shashangou Bridge used by the Dunge Railway were investigated using field observations, indoor analysis, and CFD numerical simulations. The results show that the sand-driving winds on the east and west sides of Shashangou Bridge were mainly NW and WNW winds in the spring and summer, and SE and S winds in the autumn and winter. The annual sand transport potential on the west side of Shashangou Bridge is 284.19 VU, which indicates a medium wind energy environment. The sand transport potential was determined to be 27.4 VU, and the sand transport with the wind direction was 124°. The directional variability index is 0.10, which indicates a small ratio and variable wind direction. The sediment transport potential on the east side of Shashangou Bridge is 31.24 VU, indicating a low wind energy environment. The results of the sediment transport potential were 8.97 VU, while the results of the sediment transport wind direction were 91°, and the directional variability index was 0.29, indicating a medium ratio. The average wind speed, frequency of sand-driving wind, sand transport potential, and resultant sand transport potential on the west side of Shashangou Bridge were larger, indicating that the monitoring and control of sand damage on the west side of the bridge should be improved. According to the characteristics of the wind dynamic environment on the west side of the bridge when combined with the flowing dune, the numerical simulation analysis results show that the wind speed in the overhead area and bridge deck is greater than the sand-driving wind speed, and the sand transport capacity was strong, indicating that sand accumulation does not readily occur. However, with the advance of sand dunes, the possibility of sand accumulation at the bottom of the bridge and wind sand on the rail increases.

参考文献

[1] 姚宏乐. 敦煌-格尔木铁路高大沙丘区的风沙环境特征及风沙危害综合防护体系[J]. 中国沙漠, 2015, 35(3): 555-564.
[1] [Yao Hongle. The blown sand characteristics and sand hazards comprehensive protective system at the sand dune areas along the Dun-Ge Railway[J]. Journal of Desert Research, 2015, 35(3): 555-564.]
[2] 闫满存, 王光谦, 董光荣, 等. 巴丹吉林沙漠沙山发育与环境演变研究[J]. 中国沙漠, 2001, 21(4): 361-366.
[2] [Yan Mancun, Wang Guangqian, Dong Guangrong, et al. Study on Mega Dunes development and environmental change in Badain Jaran desert[J]. Journal of Desert Research, 2001, 21(4): 361-366.]
[3] 张伟民, 王涛. 巴丹吉林沙漠高大沙山形成演化初步探讨[J]. 中国沙漠, 2005, 25(2): 281-286.
[3] [Zhang Weimin, Wang Tao. Approach to formation and evolution of megadunes in Badain Jaran desert[J]. Journal of Desert Research, 2005, 25(2): 281-286.]
[4] 张毅. 敦格铁路与青藏铁路接轨线路方案研究[J]. 铁道标准设计, 2009(7): 10-14.
[4] [Zhang Yi. Research on alignment plan of Dunge Railway and Qinghai-Tibet Railway[J]. Railway Standard Design, 2009(7): 10-14.]
[5] 王文博. 敦格铁路沙山沟特大桥风荷载计算方法[J]. 铁道建筑, 2020, 60(11): 12-15.
[5] [Wang Wenbo. Wind load calculation of Shashangou bridge on Dunhuang-Golmud railway[J]. Railway Construction, 2020, 60(11): 12-15.]
[6] 谢胜波, 喻文波, 屈建军, 等. 青藏高原红梁河风沙动力环境特征[J]. 中国沙漠, 2018, 38(2): 219-224.
[6] [Xie Shengbo, Yu Wenbo, Qu Jianjun, et al. Dynamic environment of blown sand at Hongliang river of Qinghai-Tibet Plateau[J]. Journal of Desert Research, 2018, 38(2): 219-224.]
[7] 鱼燕萍, 张克存, 安志山, 等. 敦煌-格尔木铁路沿线风动力环境特征[J]. 中国沙漠, 2020, 40(1): 41-48.
[7] [Yu Yanping, Zhang Kecun, An Zhishan, et al. Dynamic environment of wind along the Dunhuang-Golmud railway[J]. Journal of Desert Research, 2020, 40(1): 41-48.]
[8] 张正偲, 董治宝, 赵爱国, 等. 输沙量与输沙势的关系[J]. 中国沙漠, 2011, 31(4): 824-827.
[8] [Zhang Zhengcai, Dong Zhibao, Zhao Aiguo, et al. Relationship between sediment yield and sediment potential[J]. Journal of Desert Research, 2011, 31(4): 824-827.]
[9] 凌裕泉. 最大可能输沙量的工程计算[J]. 中国沙漠, 1997, 17(4): 362-368.
[9] [Ling Yuquan. Engineering calculation of maximum possible sediment transport[J]. Journal of Desert Research, 1997, 17(4): 362-368.]
[10] 蔡迪文, 张克存, 安志山, 等. 青藏铁路格拉段风动力环境及其对铁路沙害的影响[J]. 中国沙漠, 2017, 37(1): 40-47.
[10] [Cai Diwen, Zhang Kecun, An Zhishan, et al. Wind energy environments and its impacts on railway sand hazards along Gerlha section of the Qinghai-Tibet railway[J]. Journal of Desert Research, 2017, 37(1): 40-47.]
[11] 董治宝, 屈建军, 钱广强, 等. 库姆塔格沙漠风沙地貌区划[J]. 中国沙漠, 2011, 31(4): 805-814.
[11] [Dong Zhibao, Qu Jianjun, Qian Guangqiang, et al. Aeolian geomorphological regionalization of the Kumtagh Desert[J]. Journal of Desert Research, 2011, 31(4): 805-814.]
[12] 张龙飞. 敦格铁路小柴旦至饮马峡段风沙病害分析[J]. 四川建筑, 2009(6): 81-82.
[12] [Zhang Longfei. Analysis of wind-sand disease in Xiaochaidan to Yinmaxia section of Dunge Railway[J]. Sichuan Architecture, 2009, 29(6): 81-82.]
[13] 王旭. 敦格铁路塞什腾山区的地质构造特征[J]. 科技资讯, 2012(36): 30-31.
[13] [Wang Xu. Geological structure characteristics of the Seshiteng Mountain area of Dunge railway[J]. Science and Technology Information, 2012(36): 30-31.]
[14] 田禾, 屈建军, 杨根生, 等. 敦-格铁路途经库姆塔格沙漠东缘高大沙山区可行性研究[J]. 中国沙漠, 2012, 32(1): 1-8.
[14] [Tian He, Qu Jianjun, Yang Gensheng, et al. Study on the feasibility of Dunhuang-Golmud railway crossing the megadunes area at the east edge of Kumtagh Desert[J]. Journal of Desert Research, 2012, 32(1): 1-8.]
[15] 谢胜波, 屈建军. 青藏铁路主要沙害路段治理技术及成效[J]. 干旱区资源与环境, 2014, 28(7): 105-110.
[15] [Xie Shengbo, Qu Jianjun. Sand damage control and effect at main sections of Qinghai-Tibet Railway[J]. Journal of Arid Land Resources and Environment, 2014, 28(7): 105-110.]
[16] 李良英, 石龙, 蒋富强, 等. 青藏铁路巴索曲特大桥沙害形成原因分析[J]. 铁道学报, 2016, 38(12): 111-117.
[16] [Li Liangying, Shi Long, Jiang Fuqiang, et al. Analysis of formation causes of sand disasters on basuoqu bridge of Qinghai-Tibet railway[J]. Journal of the China Railway Society, 2016, 38(12): 111-117.]
[17] 师景瑞, 石龙. 风沙地区低净空桥梁下部流场结构及积沙特征分析[J]. 铁道标准设计, 2022, 66(9): 111-115.
[17] [Shi Jingrui, Shi Long. Analysis of flow field structure and sand accumulation characteristics under low clearance bridge in windblown sand area[J]. Railway Standard Design, 2022, 66(9): 111-115.]
[18] 张亚宾, 刘文晓. 风沙流对青藏铁路路基影响的研究[J]. 中国建材科技, 2017, 26(3): 88-89.
[18] [Zhang Yabin, Liu Wenxiao. Study on the influence of wind-blown sand on Qinghai-Tibet railway subgrade[J]. China Building Materials Science and Technology, 2017, 26(3): 88-89.]
[19] Jiyan L I, Zhibao D, Guangqiang Q, et al. Pattern analysis of a linear dune field on the northern margin of Qarhan Salt Lake, northwestern China[J]. Journal of Arid Land, 2016, 8(5): 670-680.
[20] Fryberger S G. Dunes forms and wind regime[J]. A Study of Global Sand Seas, 1979, 1052: 137-169
[21] Bagnold R A. The Physics of Blown Sand and Desert Dunes[M]. 1973.
[22] 张克存, 奥迎焕, 屈建军, 等. 巴丹吉林沙漠湖泊-沙山近地表风沙动力环境[J]. 干旱区地理, 2013, 36(5): 790-794.
[22] [Zhang Kecun, Ao Yinghuan, Qu Jianjun, et al. Dynamical environments of wind-blown sand near lakes surrounded by sand-mountains in the Badain Jaran Desert[J]. Arid Land Geography, 2013, 36(5): 790-794.]
[23] 郑伟, 郑新倩, 刘娅楠, 等. 塔里木盆地南缘风动力环境研究[J]. 新疆师范大学学报(自然科学版), 2018, 37(2): 44-49.
[23] [Zheng Wei, Zheng Xinqian, Liu Yanan, et al. Study of dynamical environments over southern margin of the Tarim Basin[J]. Journal of Xinjiang Normal University (Natural Science Edition), 2018, 37(2): 44-49.]
[24] 刘伟琦, 马绍休, 宫毓来, 等. 农业干旱业务化监测研究进展与展望[J]. 中国沙漠, 2023, 43(1): 197-211.
[24] [Liu Weiqi, Ma Shaoxiu, Gong Yulai, et al. Research progress and perspective for operationalization of agricultural drought monitoring[J]. Journal of Desert Research, 2023, 43(1): 197-211.]
[25] 王文博, 黄宁, 顿洪超. 沙丘背风侧不同铁路结构形式对风沙环境的适应性分析[J]. 力学学报, 2020, 52(3): 680-688.
[25] [Wang Wenbo, Huang Ning, Dun Hongchao. Analysis of wind-sand movement over sand dune with different railway forms downstream[J]. Chinese Journal of Mechanical Mechanics, 2020, 52(3): 680-688.]
[26] 梁晓磊, 牛清河, 安志山, 等. 甘肃瓜州锁阳城南雅丹地貌区起沙风况与输沙势特征[J]. 中国沙漠, 2019, 39(3): 48-55.
[26] [Liang Xiaolei, Niu Qinghe, An Zhishan, et al. Sand-driving wind regime and sand drift potential in the Yardang landform areas of southern Suoyang Town, Guazhou, Gansu[J]. Journal of Desert Research, 2019, 39(3): 48-55.]
[27] 杨兴华, 何清, 阿吉古丽·沙依提, 等. 塔克拉玛干沙漠北缘荒漠过渡带风沙流结构特征分析[J]. 干旱区研究, 2012, 29(4): 699-704.
[27] [Yang Xinghua, He Qing, Ajiguri Saiti, et al. Study on structure of wind-blown sand flow over the desert ecotone in the northern marginal zone of the Taklimakan Desert[J]. Arid Zone Research, 2012, 29(4): 699-704.]
[28] 殷代英, 屈建军, 韩庆杰, 等. 青藏铁路错那湖段风沙活动强度特征分析[J]. 中国沙漠, 2013, 33(1): 9-15.
[28] [Yin Daiying, Qu Jianjun, Han Qingjie, et al. Wind-blown sand activity intensity in Cuonahu Lake section of Qinghai-Tibet railway[J]. Journal of Desert Research, 2013, 33(1): 9-15.]
[29] 张克存, 牛清河, 安志山, 等. 敦煌沙漠-绿洲过渡带近地表风沙动力环境[J]. 水土保持通报, 2015, 35(4): 8-11, 17.
[29] [Zhang Kecun, Niu Qinghe, An Zhishan, et al. Aeolian dynamics environments near earth surface in desert-oasis transitional zone of Dunhuang area[J]. Bulletin of Soil and Water Conservation, 2015, 35(4): 8-11, 17.]
[30] 罗劲文. 浅谈敦煌至格尔木铁路风沙地区选线[J]. 科技资讯, 2013(3): 31-32.
[30] [Luo Jinwen. A brief discussion on the selection of railway line in the wind-sand area from Dunhuang to Golmud[J]. Science and Technology Information, 2013(3): 31-32.]
[31] 胡菲, 张克存, 安志山, 等. 敦煌沙漠、绿洲和戈壁地表风动力环境特征同步对比[J]. 中国沙漠, 2020, 40(4): 113-119.
[31] [Hu Fei, Zhang Kecun, An Zhishan, et al. Comparison of wind dynamic environment among desert, oasis and gobi[J]. Journal of Desert Research, 2020, 40(4): 113-119.]
[32] 朱朝云, 丁国栋, 杨明远. 风沙物理学[M]. 北京: 中国林业出版社, 1992.
[32] [Zhu Chaoyun, Ding Guodong, Yang Mingyuan. Physics of Aeolian Sand[M]. Beijing: China Forestry Publishing House, 1992.]
[33] 蔡东旭, 李生宇, 王海峰, 等. 新疆S214公路台特玛湖干涸湖盆段风沙危害及防治[J]. 中国沙漠, 2020, 40(1): 1-11.
[33] [Cai Dongxu, Li Shengyu, Wang Haifeng, et al. Aeolian hazard and comprehensive protection of S214 highway in Taitema Playa, Xinjiang, China[J]. Journal of Desert Research, 2020, 40(1): 1-11.]
文章导航

/