新疆玛纳斯河流域地下水砷氟分布及共富集成因
收稿日期: 2023-03-27
修回日期: 2023-06-15
网络出版日期: 2023-09-28
基金资助
国家自然科学基金项目(42007161)
Distribution and coenrichment of arsenic and fluorine in the groundwater of the Manas River Basin in Xinjiang
Received date: 2023-03-27
Revised date: 2023-06-15
Online published: 2023-09-28
砷(As)、氟(F)污染水体及其共存问题是环境领域的热点问题,长期暴露其中对公众的身体健康存在巨大威胁。以新疆玛纳斯河流域为研究区,分析高As、高F地下水的水化学及空间分布特征,结合地质条件、赋存环境和人类活动的影响进一步阐明地下水As和F的来源、迁移与富集的水文地球化学过程。结果表明:研究区地下水整体为弱碱性、还原环境的淡水,地下水As、F质量浓度变化范围分别为1.13~41.35 μg·L-1、0.06~8.02 mg·L-1,高As、高F地下水水样占总水样的62.9%、45.7%,砷氟共富集占总水样的37.1%。砷氟共富集地下水主要分布在平原区北部靠近沙漠边缘,水化学类型主要为HCO3·Cl型和HCO3·SO4·Cl型。研究区南部山区高As、高F岩层是地下水As、F的原生来源,区域地质构造与水文地质条件是影响地下水砷氟富集的重要因素。玛纳斯河流域高As地下水具有高pH值、低γSO42-/γCl-比、低Eh等特征,说明弱碱性的还原环境有利于地下水中As富集;高F地下水具有高pH值、高HCO3-、高Na+和低Ca2+等特征,说明高Na+和低Ca2+的碱性环境有利于地下水中F富集。
康文辉 , 周殷竹 , 孙英 , 周金龙 , 曹月婷 , 鲁涵 , 涂治 . 新疆玛纳斯河流域地下水砷氟分布及共富集成因[J]. 干旱区研究, 2023 , 40(9) : 1425 -1437 . DOI: 10.13866/j.azr.2023.09.06
Arsenic (As) and fluoride (F) pollution in water bodies, along with their coexistence, are critical environmental concerns, with long-term exposure posing a significant threat to public health. This study focuses on the Manas River Basin as the research area, analyzing the hydrochemical, and spatial distribution characteristics of groundwater with high As and F content. Furthermore, the study aims to elucidate the hydrogeochemical processes related to the origin, migration, and enrichment of As, and F in groundwater, considering geological conditions, occurrence environments, and the influence of human activities. The results show that the groundwater in the study area exhibits an alkaline-reducing environment. The mass concentrations of As and F in groundwater range from 1.13 to 41.35 μg·L-1 and from 0.06 to 8.02 mg·L-1, respectively. Groundwater samples with high As and F content constituted 62.9% and 45.7% of the total samples, respectively, while samples with a coenrichment of As and F accounted for 37.1% of the total samples. As-F coenriched groundwater is mainly distributed in the northern plain region, near the edge of the desert, with the dominant hydrochemical types being HCO3·Cl and HCO3·SO4·Cl. The primary sources of As and F in groundwater are high-content rock strata found in the southern mountainous area of the Manas River Basin. The high pH value, low SO42-/Cl- molar ratio, and low Eh of the high-As-content groundwater in the Manas River Basin indicate that a weak alkaline-reducing environment facilitates As enrichment in groundwater. Conversely, groundwater with high F content is characterized by high pH, HCO3-, and Na+ levels, as well as low Ca2+, indicating that an alkaline environment with high Na+ and low Ca2+ content favors F enrichment in groundwater.
Key words: arsenic; fluoride; coenrichment; water chemistry; geological conditions; Manas River Basin
[1] | Podgorski J, Berg M. Global threat of arsenic in groundwater[J]. Science, 2020, 368(6493): 845-850. |
[2] | Podgorski J, Berg M. Global analysis and prediction of fluoride in groundwater[J]. Nature Communications, 2022, 13: 4232. https://doi.org/10.1038/s41467-022-31940-x. |
[3] | 高存荣, 刘文波, 冯翠娥, 等. 干旱、半干旱地区高砷地下水形成机理研究: 以中国内蒙古河套平原为例[J]. 地学前缘, 2014, 21(4): 13-29. |
[3] | [Gao Cunrong, Liu Wenbo, Feng Cui’e, et al. Research on the formation mechanism of high arsenic groundwater in arid and semi-arid regions: A case study of Hetao Plain in Inner Mongolia, China[J]. Earth Science Frontiers, 2014, 21(4): 13-29.] |
[4] | Xie X J, Wang Y X, Ellis A, et al. The sources of geogenic arsenic in aquifers at Datong Basin, northern China: Constraints from isotopic and geochemical data[J]. Journal of Geochemical Exploration, 2011, 110(2): 155-166. |
[5] | Xie X J, Wang Y X, Su C L, et al. Influence of irrigation practices on arsenic mobilization: Evidence from isotope composition and Cl/Br ratios in groundwater from Datong Basin, northern China[J]. Journal of Hydrology, 2012, 424: 37-47. |
[6] | 郭华明, 郭琦, 贾永锋, 等. 中国不同区域高砷地下水化学特征及形成过程[J]. 地球科学与环境学报, 2013, 35(3): 83-96. |
[6] | [Guo Huaming, Guo Qi, Jia Yongfeng, et al. Chemical characteristics and geochemical processes of high arsenic groundwater in different regions of China[J]. Journal of Earth Sciences and Environment, 2013, 35(3): 83-96.] |
[7] | 郭华明, 杨素珍, 沈照理. 富砷地下水研究进展[J]. 地球科学进展, 2007, 22(11): 1109-1117. |
[7] | [Gao Huaming, Yang Suzhen, Shen Zhaoli. High arsenic groundwater in the World: Overview and research perspectives[J]. Advances in Earth Science, 2007, 22(11): 1109-1117.] |
[8] | Fordyce F M. Fluorine: Human health risks[J]. Encyclopedia of Environmental Health, 2011, 2: 776-785. |
[9] | 栾风娇. 新疆南部典型区地下水中氟的分布特征及富集因素研究[D]. 乌鲁木齐: 新疆农业大学, 2017. |
[9] | [Luan Fengjiao. Distribution Characteristics and Enrichment Factors of Fluoride in Groundwater in Typical Areas of Southern Xinjiang[D]. Urumqi: Xinjiang Agricultural University, 2017.] |
[10] | 王根绪, 程国栋. 西北干旱区水中氟的分布规律及环境特征[J]. 地理科学, 2000, 20(2): 153-159. |
[10] | [Wang Genxu, Cheng Guodong. The distributing regularity of fluorine and its environmental characteristics in arid area of Northwest China[J]. Scientia Geographica Sinica, 2000, 20(2): 153-159.] |
[11] | 范薇. 塔里木盆地南缘高氟高砷地下水形成机理与处理技术研究——以和田地区绿洲带为例[D]. 乌鲁木齐: 新疆农业大学, 2020. |
[11] | [Fan Wei. Formation Mechanism and Treatment Technology of High Fluoride and High Arsenic Groundwater in the South Margin of Tarim Basin: A Case Study of Oasis Belt in Hotan Area[D]. Urumqi: Xinjiang Agricultural University, 2020.] |
[12] | 孙英, 周金龙, 杨方源, 等. 塔里木盆地南缘绿洲带地下水砷氟碘分布及共富集成因[J]. 地学前缘, 2022, 29(3): 99-114. |
[12] | [Sun Ying, Zhou Jinlong, Yang Fangyuan, et al. Distribution and co-enrichment genesis of arsenic, fluorine and iodine in groundwater of the oasis belt in the southern margin of Tarim Basin[J]. Earth Science Frontiers, 2022, 29(3): 99-114.] |
[13] | 雷米, 周金龙, 周殷竹, 等. 天山北麓中段绿洲带高砷地下水中砷的迁移转化规律[J/OL]. 地球科学: 1-18. http://kns.cnki.net/kcms/detail/42.1874.P.20220923.1123.010.html. |
[13] | [Lei Mi, Zhou Jinlong, Zhou Yinzhu, et al. Migration and transformation mechanism of high arsenic groundwater in oasis belt in the middle part of northern piedmont of Tianshan mountain[J/OL]. Earth Science: 1-18.http://kns.cnki.net/kcms/detail/42.1874.P.20220923.1123.010.html. ] |
[14] | Zhou Y Z, Tu Z, Zhou J L, et al. Distribution, dynamic and influence factors of groundwater arsenic in the Manas River Basin in Xinjiang, PR. China[J]. Applied Geochemistry, 2022, 146: 105441. |
[15] | 程维明, 包安明, 柴慧霞, 等. 新疆地貌格局及其效应[M]. 北京: 科学出版社, 2018. |
[15] | [Cheng Weiming, Bao Anming, Chai Huixia, et al. Geomorphological Patterns and Effects in Xinjiang[M]. Beijing: Science Press, 2018.] |
[16] | 赵宝峰. 干旱区水资源特征及其合理开发模式研究—以玛纳斯河流域为例[D]. 西安: 长安大学, 2010. |
[16] | [Zhao Baofeng. Research on Water Resources Characteristics and its Rational Development Pattern for Arid Areas: A case of Manas River Basin[D]. Xi’an: Chang’an University, 2010.] |
[17] | 王建军. 干旱内陆盆地地下水流模式与典型系统数值模拟[D]. 武汉: 中国地质大学, 2020. |
[17] | [Wang Jianjun. Groundwater Flow Patterns and Numerical Simulation of Typical System in an Arid Inland Basin, Northwest China[D]. Wuhan: China University of Geosciences, 2020.] |
[18] | 刘志明, 王贵玲, 刘少玉, 等. 玛纳斯河流域平原区地下水化学和同位素分析[J]. 勘察科学技术, 2010, 16(2): 18-23. |
[18] | [Liu Zhiming, Wang Guiling, Liu Shaoyu, et al. Analysis on hydrochemistry and isotopic compositions of groundwater in the plain of Manas River Basin[J]. Site Investigation Science and Technology, 2010, 16(2): 18-23.] |
[19] | 李政葵, 董少刚, 张涛, 等. 内蒙古托克托县地区浅层地下水氟化物与土壤水溶性氟的相关性研究[J]. 干旱区研究, 2019, 36(6): 1351-1358. |
[19] | [Li Zhengkui, Dong Shaogang, Zhang Tao, et al. Correlation between fluoride in shallow groundwater and water-soluble fluoride in soil in Togtoh County, Inner Mongolia[J]. Arid Zone Research, 2019, 36(6): 1351-1358.] |
[20] | 侯珺. 石河子地区地下水水质演化与微量无机组分形成机理研究[D]. 乌鲁木齐: 新疆农业大学, 2018. |
[20] | [Hou Jun. Research of Evolution of Groundwater Quality and Occurrence Mechanism of Trace Inorganic Components in Shihezi Area[D]. Urumqi: Xinjiang Agricultural University, 2018.] |
[21] | 栾风娇, 周殷竹, 周金龙, 等. 新疆石河子地区地下水氟分布及富集因素分析[J]. 人民黄河, 2016, 38(3): 64-67, 71. |
[21] | [Luan Fengjiao, Zhou Yinzhu, Zhou Jinlong, et al. Distribution characteristics and enrichment factors of groundwater fluorine in Shihezi Area of Xinjiang[J]. Yellow River, 2016, 38(3): 64-67, 71.] |
[22] | 马媛媛. 玛河流域城市土壤重金属污染状况及风险评价[D]. 石河子: 石河子大学, 2016. |
[22] | [Ma Yuanyuan. Heavy Metal Pollution Characteristics in the Manasi River Basins[D]. Shihezi: Shihezi University, 2016.] |
[23] | Amiri V, Sohrabi N, Dadgar M A. Evaluation of groundwater chemistry and its suitability for drinking and agricultural uses in the Lenjanat plain, central Iran[J]. Environmental Earth Sciences, 2015, 74(7): 6163-6176. |
[24] | 孙一博. 渭河流域地下水中氟和碘的形成机理及其对人体健康的影响[D]. 西安: 长安大学, 2014. |
[24] | [Sun Yibo. Formation Mechanism and Human Health Influence of Fluorine and Iodine of Groundwater in Wei River Basin[D]. Xi’an: Chang’an University, 2014.] |
[25] | 王刚. 郑州市北郊水源地高砷地下水的分布与形成机理初步研究[D]. 青岛: 青岛理工大学, 2011. |
[25] | [Wang Gang. Preliminary Research on Spatial Distribution and Formation of High as Groundwater in Northern Suburb Groundwater source Field, Zhengzhou[D]. Qingdao: Qingdao Technological University, 2011.] |
[26] | 赵阿宁, 范鹏康, 朱桦, 等. 陕西省大荔县地下水中氟的含量特征及其影响因素分析[J]. 西北地质, 2009, 42(3): 102-108. |
[26] | [Zhao A’ning, Fan Pengkang, Zhu Hua, et al. Analysis of the content of fluorin and its effect fators on ground water in Dali County, Shannxi Province[J]. Northwestern Geology, 2009, 42(3): 102-108.] |
[27] | Wang G X, Cheng G D. Fluoride distribution in water and the governing factors of environment in arid North-west China[J]. Journal of Arid Environments, 2001, 49(3): 601-614. |
[28] | He X D, Li P Y, Wu J H, et al. Poor groundwater quality and high potential health risks in the Datong Basin, northern China: Research from published data[J]. Environmental Geochemistry and Health, 2021, 43(2): 791-812. |
[29] | 时雯雯, 周金龙, 曾妍妍, 等. 和田地区地下水中氟的分布特征及形成过程[J]. 干旱区研究, 2022, 39(1): 155-164. |
[29] | [Shi Wenwen, Zhou Jinlong, Zeng Yanyan, et al. Distribution characteristics and formation of fluorine in groundwater in Hotan Prefecture[J]. Arid Zone Research, 2022, 39(1): 155-164.] |
/
〈 | 〉 |