天气与气候

宁夏六盘山区地面雨滴谱特征统计分析

  • 马思敏 ,
  • 舒志亮 ,
  • 常倬林 ,
  • 周楠 ,
  • 刘士军
展开
  • 1.中国气象局旱区特色农业气象灾害监测预警与风险管理重点实验室,宁夏 银川 750002
    2.宁夏回族自治区气象灾害防御技术中心,宁夏 银川 750002
    3.乌海市气象局,内蒙古 乌海 016000
马思敏(1991-),女,工程师,研究方向为大气物理. E-mail: msm053@163.com

收稿日期: 2023-01-18

  修回日期: 2023-05-11

  网络出版日期: 2023-08-24

基金资助

宁夏回族自治区重点研发计划(2022BEG02010);国家自然科学基金联合基金项目(U22A202286);第二次青藏高原综合科学考察研究项目(2019QZKK0104);中国气象局旱区特色农业气象灾害监测预警与风险管理重点实验室开放研究项目(CAMF-202207)

Statistics and analysis of surface raindrop spectrum characteristics in Liupan Mountain area of Ningxia

  • Simin MA ,
  • Zhiliang SHU ,
  • Zhuolin CHANG ,
  • Nan ZHOU ,
  • Shijun LIU
Expand
  • 1. Key Laboratory for Meteorological Disaster Monitoring and Early Warning and Risk Management of Characteristic Agriculture in Arid Regions, CMA, Yinchuan 750002, Ningxia, China
    2. Key Laboratory of Meteorological Disaster Preventing and Reducing of Ningxia, Yinchuan 750002, Ningxia, China
    3. Wuhai Meteorological Bureau, Wuhai 016000, Inner Mongolia, China

Received date: 2023-01-18

  Revised date: 2023-05-11

  Online published: 2023-08-24

摘要

利用2020—2021年六盘山区58次降雨过程不同站点的雨滴谱数据,对层状云、对流云、积层混合云三类降雨的微物理参量、雨滴谱平均特征,以及Gamma分布参数等进行了分析。结果表明:(1) 同一站点的各微物理参量以及特征直径均值表现为:对流云>积层混合云>层状云;在层状云和积层混合云中,平均直径Dave、众数直径Dmode表现为山腰大于山顶和山底,随着东、西坡两侧海拔高度的升高,其最大直径Dmax、质量加权平均直径Dm、雨强R、雷达反射率Z、液态含水量Q逐渐增大;(2) 层状云和积层混合云小雨滴对雨强和数浓度的贡献均为最大,对流云小雨滴对数浓度贡献最大,而中等雨滴对雨强的贡献最大;(3) Gamma分布的参数N0(阶距参数)、 μ(形状参数)、λ(斜率参数)随着海拔高度的升高而减小,μ-λ拟合曲线的斜率与降水类型密切相关;(4) 山顶站点雨滴粒子数浓度Nw较山脚站点有所减小,而平均尺度Dm增大;(5) 西北气流型的雨滴谱各特征直径参量及各微物理参量大于东高西低型和平直气流型。

本文引用格式

马思敏 , 舒志亮 , 常倬林 , 周楠 , 刘士军 . 宁夏六盘山区地面雨滴谱特征统计分析[J]. 干旱区研究, 2023 , 40(8) : 1203 -1214 . DOI: 10.13866/j.azr.2023.08.01

Abstract

The microphysical parameters, average characteristics of raindrop spectra, and gamma distribution parameters of three types of rainfall (stratiform, cumulonimbus, and stratocumulus) were analyzed using raindrop spectrum data from different stations of 58 rainfall processes in the Liupan Mountains from 2020 to 2021. The results are as follows: (1) The mean values for all microphysical parameters at each station were higher for cumulonimbus rainfall compared to stratocumulus and stratiform rainfall. In stratiform and stratocumulus rainfall, the mean diameter (Dave) and mode diameter (Dmode) were smaller at the top and bottom of the mountain and greater on the mountainside. Conversely, the maximum diameter (Dmax), mass-weighted mean diameter (Dmode), rain rate (R), radar reflectivity (Z), and liquid water content (Q) increased with elevation on the east and west slopes. (2) The contributions of small raindrops to rain rate (R) and number concentration (N) were higher in stratiform and stratocumulus rainfall than in cumulonimbus rainfall. However, the contributions of small and medium-sized raindrops to N and R, respectively, were higher in cumulonimbus rainfall than in stratiform and stratocumulus rainfall. (3) The N0, μ, and λ parameters of gamma distribution decreased with an increase in altitude. The slope of the μ-λ fitting curve was closely related to the type of rainfall. (4) Compared with the foot of the mountain sites, the peak site exhibited a decrease in raindrop number concentration (Nw) and an increase in mean scale (Dm). (5) The characteristic diameter and microphysical parameters varied under different circulation situations.

参考文献

[1] 朱亚乔, 刘元波. 地面雨滴谱观测技术及特征研究进展[J]. 地球科学进展, 2013, 28(6): 685-694.
[1] [ Zhu Yaqiao, Liu Yuanbo. Advances in measurement techniques and statistics features of surface raindrop size distribution[J]. Advances in Earth Science, 2013, 28(6): 685-694. ]
[2] 宫福久, 刘吉成, 李子华. 三类降水云雨滴谱特征研究[J]. 大气科学, 1997, 21(5): 607-614.
[2] [ Gong Fujiu, Liu Jicheng, Li Zihua. Study of the raindrop size distributions for three types of precipitation[J]. Chinese Journal of Atmospheric Sciences, 1997, 21(5): 607-614. ]
[3] 房彬, 班显秀, 郭学良, 等. 雷达—雨量计—粒子激光探测仪联合估算降水量[J]. 大气科学, 2010, 34(4): 513-519.
[3] [ Fang Bin, Ban Xianxiu, Guo Xueliang, et al. Area rainfall estimation by using radar, raingauge, and particle laser-based optical measurement instrument[J]. Chinese Journal of Atmospheric Sciences, 2010, 34(3): 513-519. ]
[4] Marshall J S, Palmer W M K. The distribution of raindrops with size[J]. Journal of Meteorology, 1948, 5: 165-166.
[5] Ulbrich C W. Natural variations in the analytical form of the raindrop size distribution[J]. Journal of Climate and Applied Meteorology, 1983, 22: 1764-1775.
[6] 陈宝君, 李子华, 刘吉成, 等. 三类降水云雨滴谱分布模式[J]. 气象学报, 1998, 56(4): 506-512.
[6] [ Chen Baojun, Li Zihua, Liu Jicheng, et al. Model of raindrop size distribution in three types of precipitation[J]. Acta Meteorologica Sinica, 1998, 56(4): 506-512. ]
[7] 房彬, 郭学良, 肖辉. 辽宁地区不同降水云系雨滴谱参数及其特征量研究[J]. 大气科学, 2016, 40(6): 1154-1164.
[7] [ Fang Bin, Guo Xueliang, Xiao Hui. A study on characteristics of spectral parameters and characteristic variables of raindrop size distribution for different cloud systems in Liaoning Province[J]. Chinese Journal of Atmospheric Sciences, 2016, 40 (6): 1154-1164. ]
[8] 周黎明, 王俊, 龚佃利, 等. 山东三类降水云雨滴谱分布特征的观测研究[J]. 大气科学学报, 2014, 37(2): 216-222.
[8] [ Zhou Liming, Wang Jun, Gong Dianli, et al. A study on the distribution of raindrop size in three types of precipitation in Shandong Province[J]. Transactions of Atmospheric Sciences, 2014, 37(2): 216-222. ]
[9] 牛生杰, 安夏兰, 桑建人. 不同天气系统宁夏夏季降雨谱分布参量特征的观测研究[J]. 高原气象, 2002, 21(1): 37-44.
[9] [ Niu Shengjie, An Xialan, Sang Jianren. Observational research on physical feature of summer rain dropsize distribution under synoptic systems in Ningxia[J]. Plateau Meteorology, 2002, 21(1): 37-44. ]
[10] 张玉欣, 韩辉邦, 郭世钰, 等. 祁连山南麓夏季不同降水云系雨滴谱特征及其Z-R关系[J]. 干旱区研究, 2021, 38(4): 1048-1057.
[10] [ Zhang Yuxin, Han Huibang, Guo Shiyu, et al. Statistical characteristics of raindrop size distribution and its Z-R relationship for different precipitation clouds in summer in the Qilian Mountains[J]. Arid Zone Research, 2021, 38(4): 1048-1057. ]
[11] 王昀, 王旭, 廖飞佳, 等. 新疆天山山区降雨的微物理结构特征[J]. 冰川冻土, 2018, 40(4): 695-701.
[11] [ Wang Yun, Wang Xu, Liao Feijia, et al. Micro-structural characteristics of raindrop spectra of precipitation in the Tianshan Mountains[J]. Journal of Glaciology and Geocryology, 2018, 40(4): 695-701. ]
[12] 李慧, 银燕, 单云鹏, 等. 黄山层状云和对流云降水不同高度的雨滴谱统计特征分析[J]. 大气科学, 2018, 42(2): 268-280.
[12] [ Li Hui, Yin Yan, Shan Yunpeng, et al. Statistical characteristics of raindrop size distribution for stratiform and convective precipitation at different altitudes in Mt. Huangshan[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(2): 268-280. ]
[13] 陈聪, 银燕, 陈宝君. 黄山不同高度雨滴谱的演变特征[J]. 大气科学学报, 2015, 38(3): 388-395.
[13] [ Chen Cong, Yin Yan, Chen Baojun. Raindrop size distribution at different altitudes in Mt. Huang[J]. Transactions of Atmospheric Sciences, 2015, 38(3): 388-395. ]
[14] 张昊, 濮江平, 李靖, 等. 庐山地区不同海拔高度降水雨滴谱特征分析[J]. 气象与减灾研究, 2011, 34(2): 43-50.
[14] [ Zhang Hao, Pu Jiangping, Li Jing, et al. Analysis of characteristics of raindrop size distribution at different altitudes in Lushan[J]. Meteorology and Disaster Reduction Research, 2011, 34(2): 43-50. ]
[15] 程鹏, 常祎, 刘琴, 等. 祁连山春季一次层状云降水的雨滴谱分布及地形影响特征[J]. 大气科学, 2021, 45(6): 1232-1248.
[15] [ Cheng Peng, Chang Yi, Liu Qin, et al. A case study of raindrop size distribution and orographic impact characteristics in spring stratiform precipitation over the Qilian Mountains[J]. Chinese Journal of Atmospheric Sciences, 2021, 45(6): 1232-1248. ]
[16] 李山山, 王晓芳, 万蓉, 等. 青藏高原东坡不同海拔区域的雨滴谱特征[J]. 高原气象, 2020, 39(5): 899-911.
[16] [ Li Shanshan, Wang Xiaofang, Wan Rong, et al. The characteristics of raindrop spectrum in different altitude region on the eastern slope of Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2020, 39(5): 899-911. ]
[17] 石建周, 刘贤德, 田青, 等. 六盘山半干旱区华北落叶松林坡面土壤含水量的降雨响应[J]. 干旱区研究, 2023, 40(4): 594-604.
[17] [ Shi Jianzhou, Liu Xiande, Tian Qing, et al. Rainfall response of soil water content on a slope of Larix principis-rupprechtii plantation in the semi-arid Liupan Mountains[J]. Arid Zone Research, 2023, 40(4): 594-604. ]
[18] 邓佩云, 桑建人, 杨萌, 等. 近30年六盘山东与西坡降水及空中水汽条件差异特征分析[J]. 气象科技, 2021, 49(1): 77-85.
[18] [ Deng Peiyun, Sang Jianren, Yang Meng, et al. Analysis of different characteristics of precipitation and air water vapor conditions over east and west slopes of Liupan Mountain in recent 30 years[J]. Meteorological Science and Technology, 2021, 49(1): 77-85. ]
[19] 陶涛, 张立新, 桑建人, 等. 六盘山区一次非典型冰雹天气过程微物理量特征的分析[J]. 干旱区地理, 2020, 43(2): 299-307.
[19] [ Tao Tao, Zhang Lixin, Sang Jianren, et al. A case analysis of microphysical characteristics of atypical hail formation over Liupan Moutain, China[J]. Arid Land Geography, 2020, 43(2): 299-307. ]
[20] 曹宁, 张立新, 桑建人, 等. 基于微雨雷达的六盘山区地形云降水宏微观特征观测分析[J]. 气象科学, 2019, 39(6): 775-785.
[20] [ Cao Ning, Zhang Lixin, Sang Jianren, et al. Observation and analysis on the macroscopic and microcosmic characteristics of topography, cloud and precipitation in Liupan Mountain area based on micro rain radar[J]. Journal of the Meteorological Sciences, 2019, 39(6): 775-785. ]
[21] 杜波, 马舒庆, 刘达新, 等. 雨滴谱降水现象仪综合测试系统设计[J]. 气象科技, 2018, 46(1): 56-63.
[21] [ Du Bo, Ma Shuqing, Liu Daxin, et al. Design and study of raindrop spectrum precipitation phenomenon instrument[J]. Meteorological Science and Technology, 2018, 46(1): 56-63. ]
[22] Tokay A, Bashor P G. An experimental study of small-scale variability of raindrop size distribution[J]. Journal of Applied Meteorology and Climatology, 2010, 49(11): 2348-2365.
[23] Atlas D, Srivastava R C, Sekhon R S. Doppler radar characteristics of precipitation at vertical incidence[J]. Reviews of Geophysics and Space Physics, 1973, 11(1): 1-35.
[24] 黄兴友, 印佳楠, 马雷, 等. 南京地区雨滴谱参数的详细统计分析及其在天气雷达探测中的应用[J]. 大气科学, 2019, 43(3): 691-704.
[24] [ Huang Xingyou, Yin Jianan, Ma Lei, et al. Comprehensive statistical analysis of rain drop size distribution parameters and their application to weather radar measurement in Nanjing[J]. Chinese Journal of Atmospheric Sciences, 2019, 43(3): 691-704. ]
[25] 史晋森, 张武, 陈添宇, 等. 2006年夏季祁连山北坡雨滴谱特征[J]. 兰州大学学报(自然科学版), 2008, 44(4): 60-66.
[25] [ Shi Jinsen, Zhang Wu, Chen Tianyu, et al. Raindrop-size distribution characteristics of the northern face of Qilian Mountains in the summer of 2006[J]. Journal of Lanzhou University (Natural Sciences Edition), 2008, 44(4): 60-66. ]
[26] 李岩瑛, 张强, 许霞, 等. 祁连山及周边地区降水与地形的关系[J]. 冰川冻土, 2010, 32(1): 52-61.
[26] [ Li Yanyin, Zhang Qiang, Xu Xia, et al. Relationship between precipitation and terrain over the Qilian Mountains and their ambient areas[J]. Journal of Glaciologyand Geocryology, 2010, 32(1): 52-61. ]
[27] 郑娇恒, 陈宝君. 雨滴谱分布函数的选择: M-P和Gamma分布的对比研究[J]. 气象科学, 2007, 27(1): 17-25.
[27] [ Zheng Jiaoheng, Chen Baojun. Comparative study of exponentail and Gamma functional fits to observed raindrop size distribution[J]. Scientia Meteorologica Sinica, 2007, 27(1): 17-25. ]
[28] Wang M J, Zhao K, Xue M, et al. Precipitation microphysics characteristics of a Typhoon Matmo(2014) rainband after landfall over eastern China based on polarimetric radar observations[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(20): 12415-12433.
[29] Zhang G F, Vivekanandan J, Brandes E A, et al. The shape-slope relation in observed gamma raindrop size distributions: Statistical error or useful information?[J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(8): 1106-1119.
文章导航

/