呼伦贝尔沙地樟子松人工林土壤细菌网络特征
收稿日期: 2022-09-21
修回日期: 2022-12-07
网络出版日期: 2023-06-21
基金资助
内蒙古自治区科技计划项目(2022YFHH0131);中央高校基本科研业务费项目(2021ZY47)
Soil bacterial networks in Pinus sylvestris var. mongolica plantations of the Hulunbuir Desert
Received date: 2022-09-21
Revised date: 2022-12-07
Online published: 2023-06-21
为揭示呼伦贝尔沙地樟子松人工林土壤细菌相互关系,以呼伦贝尔沙地不同林龄樟子松人工林(25 a、34 a和43 a)为研究对象,以沙质草地为对照,采用分子生态网络分析法对不同土层(0~10 cm和10~20 cm)土壤细菌群落进行比较分析。结果表明:(1) 从25 a到43 a,土壤细菌网络总边数增多,平均路径长度降低。土壤深度由0~10 cm到10~20 cm,人工林土壤细菌网络总边数减少,平均路径长度升高。与沙质草地相比,人工林土壤细菌网络总边数较少。(2) 25 a人工林关键菌种隶属于嗜酸菌目(Acidimicrobiales)、RB41和MB-A2-108,34 a人工林关键菌种隶属于Gaiellales,43 a人工林关键菌种隶属于Gaiellales、RB41、Subgroup_7、Subgroup_6、和DA101_soil_group,草地关键菌种隶属于匿杆菌门(Latescibacteria)。(3) 全氮、氨氮、微生物碳含量和脲酶酶活性对土壤细菌网络中具有高中介中心性的部分细菌有显著正相关影响(P<0.05);转化酶和过氧化氢酶活性、土壤含水量以及速效磷含量对土壤细菌网络中具有高中介中心性的部分细菌有显著负相关影响(P<0.05);土壤有机质对土壤细菌网络中具有高中介中心性的部分细菌既有显著正相关影响又有显著负相关影响(P<0.05)。樟子松人工林从25 a到43 a,土壤细菌网络愈加复杂和紧密,土壤深度由0~10 cm到10~20 cm,网络复杂性和紧密度降低;与草地相比,人工林土壤细菌网络复杂性较低。43 a人工林土壤细菌网络关键菌种类型数量最多。另外,土壤细菌网络受土壤有机质影响最大。研究结果有助于深入理解呼伦贝尔沙地樟子松人工林土壤细菌群落,并为呼伦贝尔沙地樟子松人工林的可持续经营提供科技支撑。
张颂安 , 刘轩 , 赵珮杉 , 高广磊 , 张英 , 丁国栋 , 柳叶 , 任悦 . 呼伦贝尔沙地樟子松人工林土壤细菌网络特征[J]. 干旱区研究, 2023 , 40(6) : 905 -915 . DOI: 10.13866/j.azr.2023.06.06
To elucidate soil bacterial network interactions within Pinus sylvestris var. mongolica plantations in the Hulunbuir Desert. P. sylvestris plantations representing three different age groups (25 a, 34 a, and 43 a) and two soil layers (0-10 and 10-20 cm) were selected to assess their soil bacterial networks using molecular ecological network analysis and data from a referenced grassland. The numbers of network edges increased, the average path length reduced from 25 a to 43 a. While the number of network edges reduced and the average path length increased with soil layers from 0-10 cm to 10-20 cm. Compared with the grassland, the P. sylvestris plantations had a lower network edge, and the soil bacterial network was less complicated. The soil bacteria were found to belong to the Acidimicrobiales, RB41, and MB-A2-108 in the 25 a plantation, Gaiellales in the 34 a plantation, and Gaiellales, RB41, Subgroup_7, Subgroup_6, and DA101_soil_group in the 43 a plantation, Latescibacteria in the grassland. The soil bacterial network was significantly positively correlated with ammonia nitrogen, total nitrogen, microbial carbon content, and urease activities and significantly negatively correlated with invertase and catalase activities, soil water content and available phosphorus (P < 0.05). The soil organic matter had both positive and negative effects (P < 0.05). The soil bacterial network complexity and compactness increased from 25 a to 43 a. The opposite was found for the soil layers from 0-10 cm to 10-20 cm. Compared with the grassland, the soil bacterial network of the P. sylvestris plantation was less complicated. The keystone soil bacteria species were different among the three stand ages, and were greatest in stand 43 a. There were more keystone species in the plantation than the grassland. Soil physicochemical properties and enzymatic activity derived the soil bacterial network, and soil organic matter was the major influencing factor. This improved information contributed to a deep understanding of the soil bacterial community and provided a scientific and technological basis for the sustainable management of P. sylvestris plantations in the Hulunbuir Desert.
[1] | Bardgett R D, Putten W H. Belowground biodiversity and ecosystem functioning[J]. Nature, 2014, 515(7528): 505-511. |
[2] | Fierer N. Embracing the unknown: Disentangling the complexities of the soil microbiome[J]. Nature Reviews Microbiology, 2017, 15(10): 579-590. |
[3] | Feng W, Zhang Y Q, Lai Z R, et al. Soil bacterial and eukaryotic co-occurrence networks across a desert climate gradient in northern China[J]. Land Degradation and Development, 2021, 32(5): 1938-1950. |
[4] | 丁钰珮, 杜宇佳, 高广磊, 等. 呼伦贝尔沙地樟子松人工林土壤细菌群落结构与功能预测[J]. 生态学报, 2021, 41(10): 4131-4139. |
[4] | [Ding Yupei, Du Yujia, Gao Guanglei, et al. Soil bacterial community structure and functional prediction of Pinus sylvestris var. mongolica plantations in the Hulun Buir Sandy Land[J]. Acta Ecologica Sinica, 2021, 41(10): 4131-4139.] |
[5] | Konopka A, Lindemann S, Fredrickson J. Dynamics in microbial communities: Unraveling mechanisms to identify principles[J]. The ISME Journal, 2015, 9(7): 1488-1495. |
[6] | Zhang C, Jiao S, Shu D, et al. Inter-phylum negative interactions affect soil bacterial community dynamics and functions during soybean development under long-term nitrogen fertilization[J]. Stress Biology, 2021, 1(15): 4-13. |
[7] | Karimi B, Dequiedt S, Terrat S, et al. Biogeography of soil bacterial networks along a gradient of cropping Intensity[J]. Scientific Reports, 2019, 9(1): 3812. |
[8] | Deng Y, Jiang Y H, Yang Y F, et al. Molecular ecological network analyses[J]. BMC Bioinformatics, 2012, 13(1): 113. |
[9] | Ma B, Wang H Z, Dsouza M, et al. Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China[J]. The ISME Journal, 2016, 10(8): 1891-1901. |
[10] | 李前, 李忠武, 聂小东, 等. 水土流失防治措施对马尾松林土壤微生物群落分子生态网络的影响[J]. 土壤学报, 2022, 59(3): 819-832. |
[10] | [Li Qian, Li Zhongwu, Nie Xiaodong, et al. Effects of prevention and control measures of soil erosion on molecular ecological network of soil microbial community in Pinus massoniana plantation[J]. Acta Pedologica Sinica, 2022, 59(3): 819-832.] |
[11] | 任悦, 高广磊, 丁国栋, 等. 沙地樟子松人工林叶片-枯落物-土壤氮磷化学计量特征[J]. 应用生态学报, 2019, 30(3): 743-750. |
[11] | [Ren Yue, Gao Guanglei, Ding Guodong, et al. Stoichiometric characteristics of nitrogen and phosphorus in leaf-litter-soil system of Pinus sylvestris var. mongolica plantations[J]. Chinese Journal of Applied Ecology, 2019, 30(3): 743-750.] |
[12] | 杜宇佳, 高广磊, 陈丽华, 等. 呼伦贝尔沙区土壤细菌群落结构与功能预测[J]. 中国环境科学, 2019, 39(11): 4840-4848. |
[12] | [Du Yujia, Gao Guanglei, Chen Lihua, et al. Soil bacteria community structure and function prediction in the Hulun Buir Sandy Area[J]. China Environmental Science, 2019, 39(11): 4840-4848.] |
[13] | 曹红雨, 高广磊, 丁国栋, 等. 呼伦贝尔沙区4种生境土壤真菌群落结构和多样性[J]. 林业科学, 2019, 55(8): 118-127. |
[13] | [Cao Hongyu, Gao Guanglei, Ding Guodong, et al. Community structure and diversity of soil fungi in four habitats in Hulun Buir Sandy Land[J]. Scientia Silvae Sinicae, 2019, 55(8): 118-127.] |
[14] | Edgar R C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10): 996- 998. |
[15] | Bastian M, Heymann S, Jacomy M. Gephi: An open source software for exploring and manipulating networks[Z]. Proceedings of the International AAAI Conference on Weblogs and Social Media, ICWSM San Jose, California, USA, 2009, 3(1): 361-362. |
[16] | Deng Y, Jiang Y H, Yang Y, et al. Molecular ecological network analyses[J]. Bmc Bioinformatics, 2012, 13(1): 113. |
[17] | 石文莉, 蒋如东, 马天海, 等. 太湖不同营养水平湖区沉积环境微生物分子生态网络特征及其环境响应分析[J]. 南京大学学报(自然科学), 2018, 54(5): 1045-1056. |
[17] | [Shi Wenli, Jiang Rudong, Ma Tianhai, et al. Molecular ecological network analysis of sedimental microbial community and its response to environmental factors in different trophic status areas of Taihu Lake[J]. Journal of Nanjing University(Natural Science), 2018, 54(5): 1045-1056.] |
[18] | 李冰, 李玉双, 魏建兵, 等. 不同土地利用方式对土壤细菌分子生态网络的影响[J]. 环境科学, 2020, 41(3): 1456-1465. |
[18] | [Li Bing, Li Yushuang, Wei Jianbing, et al. Effects of different land use typess on the molecular ecological network of soil bacteria[J]. Environmental Science, 2020, 41(3): 1456-1465.] |
[19] | 赵辉, 周运超, 任启飞. 不同林龄马尾松人工林土壤微生物群落结构和功能多样性演变[J]. 土壤学报, 2020, 57(1): 227-238. |
[19] | [Zhao Hui, Zhou Yunchao, Ren Qifei. Evolution of soil microbial community structure and functional diversity in Pinus massoniana plantations with age of stand[J]. Acta Pedologica Sinica, 2020, 57(1): 227-238.] |
[20] | Xiong C, Zhu Y G, Wang J T, et al. Host selection shapes crop microbiome assembly and network complexity[J]. The New Phytologist, 2020, 229(2): 1091-1104. |
[21] | Zhang L, Zhou J C, George T, et al. Arbuscular mycorrhizal fungi conducting the hyphosphere bacterial orchestra[J]. Trends in Plant Science, 2021, 27(4): 402-411. |
[22] | Xue L, Ren H D, Brodribb T J, et al. Long term effects of management practice intensification on soil microbial community structure and co-occurrence network in a non-timber plantation[J]. Forest Ecology and Management, 2020, 459: 117805. |
[23] | 杜雄峰, 厉舒祯, 冯凯, 等. 农牧交错带草地土壤剖面微生物总量、多样性和互作网络的垂直分布特征[J]. 微生物学通报, 2020, 47(9): 2789-2806. |
[23] | [Du Xiongfeng, Li Shuzhen, Feng Kai, et al. Vertical distribution features of microbial quantity, diversity and interactions along soil profiles in an agropasture grassland[J]. Microbiology China, 2020, 47(9): 2789-2806.] |
[24] | 张鹏, 李颖, 王业林, 等. 短脚锦鸡儿灌丛对植物群落和土壤微生物群落的促进效应研究[J]. 干旱区研究, 2021, 38(2): 421-428. |
[24] | [Zhang Peng, Li Ying, Wang Yelin, et al. The positive effect of Caragana breviflora shrubs on plant communities and soil microbial communities in the Inner Mongolia desert region[J]. Arid Zone Research, 2021, 38(2): 421-428.] |
[25] | Ma L, Zhang J B, Li Z Q, et al. Long-term phosphorus deficiency decreased bacterial-fungal network complexity and efficiency across three soil types in China as revealed by network analysis[J]. Applied Soil Ecology, 2020, 148: 103506. |
[26] | 程萌, 马俊杰, 刘丹, 等. CO2封存泄漏的稻田土壤细菌监测指标筛选研究[J]. 环境科学学报, 2021, 41(6): 2390-2401. |
[26] | [Cheng Meng, Ma Junjie, Liu Dan, et al. Screening of bacteria monitoring indicators in paddy soil under sealed CO2leakage[J]. Acta Scientiae Circumstantiae, 2021, 41(6): 2390-2401.] |
[27] | 杨虎, 马巧蓉, 杨君珑, 等. 宁夏南部生态移民迁出区不同恢复模式土壤微生物群落特征[J]. 应用生态学报, 2022, 33(1): 219-228. |
[27] | [Yang Hu, Ma Qiaorong, Yang Junlong, et al. Characteristics of soil microbial communities in different restoration models in the ecological immigrants’emigration area in southern Ningxia, China[J]. Chinese Journal of Applied Ecology, 2022, 33(1): 219-228.] |
[28] | Mizuno C M, Francisco R V, Rohit G, et al. Genomes of planktonic Acidimicrobiales: Widening horizons for marine Actinobacteria by metagenomics[J]. mBio, 2015, 6(1). DOI:10.1128/mBio.02083-14. |
[29] | Cao J X. Plantations of Cinnamomum camphora (Linn.) presl with distinct soil bacterial communities mitigate soil acidity within polluted locations in Southwest China[J]. Forests, 2021, 12(6): 657. |
[30] | Jie Y C, Wu S L, Xue S, et al. Seasonal nutrient cycling and enrichment of nutrient-related soil microbes aid in the adaptation of Ramie (Boehmeria nivea L.) to nutrient-deficient conditions[J]. Frontiers in Plant Science, 2021, 12: 644904. |
[31] | Stevenson A, Hallsworth J E. Water and temperature relations of soil Actinobacteria[J]. Environmental Microbiology Reports, 2014, 6(6): 744-755. |
[32] | 康宝天, 侯扶江, BOWATTE S. 祁连山高寒草甸和荒漠草原土壤细菌群落的结构特征[J]. 草业科学, 2020, 37(1): 10-19. |
[32] | [Kang Baotian, Hou Fujiang, BOWATTE S. Characterization of soil bacterial communities in alpine and desert grasslands in the Qilian Mountain range[J]. Pratacultural Science, 2020, 37(1): 10-19.] |
[33] | 王泽铭, 李传虹, 马巧丽, 等. 湿度盐度pH协同驱动锡林河景观疣微菌群空间异质性[J]. 微生物学报, 2021, 61(6): 1728-1742. |
[33] | [Wang Zeming, Li Chuanhong, Ma Qiaoli, et al. Moisture salinity and pH co-driving spatial heterogeneity of verrucomicrobial populations in Xilin River landscape[J]. Acta Microbiologica Sinica, 2021, 61(6): 1728-1742.] |
[34] | 梁新波, 张晨, 张冠初, 等. 花生根际微生物群落结构对干旱和盐胁迫的响应[J]. 花生学报, 2021, 50(1): 33-40. |
[34] | [Liang Xinbo, Zhang Chen, Zhang Guanchu, et al. Response of peanut rhizosphere bacterial community structure to salt and drought stress[J]. Journal of Peanut Science, 2021, 50(1): 33-40.] |
[35] | Li B B, Roley S S, Duncan D S, et al. Long-term excess nitrogen fertilizer increases sensitivity of soil microbial community to seasonal change revealed by ecological network and metagenome analyses[J]. Soil Biology and Biochemistry, 2021, 160: 108349. |
[36] | Youssef Noha H, Farag Ibrahim F, Rinke Christian, et al. In silico analysis of the metabolic potential and niche specialization of candidate phylum “Latescibacteria” (WS3)[J]. PloS One, 2015, 10(6):e0127499. |
[37] | Cao H Y, Du Y J, Gao G L, et al. Afforestation of Pinus sylvestris var. mongolica remodelled soil bacterial community and potential metabolic function in the Horqin Desert[J]. Global Ecology and Conservation, 2021, DOI: 10.1016/J.GECCO.2021.E01716. |
[38] | Chakraborty P, Tribedi P. Functional diversity performs a key role in the isolation of nitrogen-fixing and phosphate-solubilizing bacteria from soil[J]. Folia Microbiologica, 2019, 64(3): 461-470. |
[39] | Wang J Y, Ren C J, Feng X X, et al. Temperature sensitivity of soil carbon decomposition due to shifts in soil extracellular enzymes after afforestation[J]. Geoderma, 2020, 374: 114426. |
[40] | 吴宪, 胡菏, 王蕊, 等. 化肥减量和有机替代对潮土微生物群落分子生态网络的影响[J]. 土壤学报, 2022, 59(2): 545-556. |
[40] | [Wu Xian, Hu He, Wang Rui, et al. Effects of reduction of chemical fertilizer and substitution coupled with organic manure on the molecular ecological network of microbial communities in fluvo-aquic soil[J]. Acta Pedologica Sinica, 2022, 59(2): 545-556.] |
[41] | 邢鏻木, 李强, 高原千惠, 等. 不同供磷水平对紫花苜蓿根际微生物功能多样性的影响[J]. 干旱区研究, 2022, 39(5): 1496-1503. |
[41] | [Xing Linmu, Li Qiang, Gao Yuanqianhui, et al. Effect of different phosphorus supply levels on rhizosphere microbial functional diversity of Medicago sativa[J]. Arid Zone Research, 2022, 39(5): 1496-1503.] |
[42] | 朱瑞芬, 刘杰淋, 王建丽, 等. 基于分子生态学网络分析松嫩退化草地土壤微生物群落对施氮的响应[J]. 中国农业科学, 2020, 53(13): 2637-2646. |
[42] | [Zhu Ruifen, Liu Jielin, Wang Jianli, et al. Molecular ecological network analyses revealing the effects of nitrogen application on soil microbial community in the Degraded Grasslands[J]. Scientia Acricultura Sinica, 2020, 53(13): 2637-2646.] |
[43] | 林雅超, 高广磊, 丁国栋, 等. 沙地樟子松人工林土壤理化性质与微生物生物量的动态变化[J]. 生态学杂志, 2020, 39(5): 1445-1454. |
[43] | [Lin Yachao, Gao Guanglei, Ding Guodong, et al. Dynamics of soil physicochemical properties and microbial biomass in a Pinus sylvestris var. mongolica plantation[J]. Chinese Journal of Ecology, 2020, 39(5): 1445-1454.] |
[44] | 韩翠, 康扬眉, 余海龙, 等. 荒漠草原凋落物分解过程中降水量对土壤酶活性的影响[J]. 生态环境学报, 2022, 31(9): 1802-1812. |
[44] | [Han Cui, Kang Yangmei, Yu Hailong, et al. Effects of precipitation on soil enzyme activities during litter decomposition in a desert steppe of northwestern China[J]. Ecology and Environmental Sciences, 2022, 31(9): 1802-1812.] |
[45] | 于德良, 雷泽勇, 赵国军, 等. 土壤酶活性对沙地樟子松人工林衰退的响应[J]. 环境化学, 2019, 38(1): 97-105. |
[45] | [Yu Deliang, Lei Zeyong, Zhao Guojun, et al. Response of soil enzyme activity to the decline of Pinus sylvestris var. mongolica plantations on sand land[J]. Environmental Chemistry, 2019, 38(1): 97-105.] |
[46] | 王学林, 高广磊, 丁国栋, 等. 沙地樟子松人工林土壤酶活性研究[J]. 干旱区资源与环境, 2021, 35(1): 114-120. |
[46] | [Wang Xuelin, Gao Guanglei, Ding Guodong, et al. Characteristics of soil enzyme activities of Pinus sylvestris var. mongolica plantations[J]. Journal of Arid Land Resources and Environment, 2021, 35(1): 114-120.] |
/
〈 | 〉 |